Filters
total: 555
Search results for: IMAGE SEGMENTATION, COMPUTER VISION, DEEP LEARNING
-
Sensors and Sensor’s Fusion in Autonomous Vehicles
PublicationAutonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...
-
Hand gesture recognition supported by fuzzy rules and Kalman filters
PublicationThe paper presents a system based on camera and multimediaprojector enabling a user to control computer applications by dynamic hand gestures. Gesture recognition methodology based on representing hand movement trajectory by motion vectors analysed using fuzzy rule-based inference is first given. For effective hand position tracking Kalman filters are employed. The system engineered is developed using J2SE and C++/OpenCV technology....
-
Video Classification Technology in a Knowledge-Vision-Integration Platform for Personal Protective Equipment Detection: An Evaluation
PublicationThis work is part of an effort for the development of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. This paper focuses on hazards resulted from the non-use of personal protective equipment (PPE), and examines a few supervised learning techniques to compose the proposed system for the purpose of recognition of three protective...
-
Gender as a Moderator of the Double Bias of Mistakes – Knowledge Culture and Knowledge Sharing Effects
PublicationThere is no learning without mistakes. The essence of the double bias of mistakes is the contradiction between an often-declared positive attitude towards learning from mistakes, and negative experiences when mistakes occur. Financial and personal consequences, shame, and blame force desperate employees to hide their mistakes. These adverse outcomes are doubled in organizations by the common belief that managers never make mistakes,...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublicationAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...
-
SkinDepth - synthetic 3D skin lesion database
Open Research DataSkinDepth is the first synthetic 3D skin lesion database. The release of SkinDepth dataset intends to contribute to the development of algorithms for:
-
Zastosowanie elektronicznych zmysłów w analizie żywności. Zastosowanie elektronicznego języka w analizie żywności.
PublicationW dzisiejszych czasach konsumenci zwracają dużą uwagę na takie cechy żywności jak: zapach, smak i wygląd. Ze względu na to naukowcy od wielu lat podejmują próby naśladowania ludzkich narządów zmysłów za pomocą urządzeń określanych jako elektroniczne zmysły. Zaliczamy do nich elektroniczny nos i język oraz komputerowy system rozróżnienia barw i kształtów. Elektroniczny język znany również jako sztuczny język lub czujnik smaku,...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Dynamic soil improvement by hybrid technologies
PublicationHybrid method of subsoil improvement for road embankment foundation is described. This method is composed of two wellknown methods: dynamic replacement (DR) and microblasting (DDC) one (Deep Dynamic Compaction). The method was used for both the strengthening of the fully saturated organic subsoil as well as for acceleration of the consolidation of the organic layers. The practice ensures the expected results. A proper example on...
-
AI-Powered Cleaning Robot: A Sustainable Approach to Waste Management
PublicationThe world is producing a massive amount of single use waste, especially plastic waste made from polymers. Such waste is usually distributed in large areas within cities, near roads, parks, forests, etc. It is a challenge to collect them efficiently. In this work, we propose a Cleaning Robot as an autonomous vehicle for waste collection, utilizing the Nvidia Jetson Nano platform for precise arm movements guided by computer...
-
Application of Shape From Shading Technique for Side Scan Sonar Images
PublicationSide scan sonar (SSS) is one of the most widely used imaging systems in the underwater environment. It is relatively cheap and easy to deploy in comparison with more powerful sensors like multibeam echosounder or synthetic aperture sonar. Although, the SSS does not provide directly the seafloor bathymetry measurements. Its outputs are usually in a form of grey level acoustic images of seafloor. However, the analysis of such images...
-
Compact global association based adaptive routing framework for personnel behavior understanding
PublicationPersonnel behavior understanding under complex scenarios is a challenging task for computer vision. This paper proposes a novel Compact model, which we refer to as CGARPN that incorporates with Global Association relevance and Adaptive Routing Pose estimation Network. Our framework firstly introduces CGAN backbone to facilitate the feature representation by compressing the kernel parameter space compared with typical algorithms,...
-
Multimodal learning application with interactive animated character. [Multimodalna aplikacja edukacyjna wykorzystująca interaktywną animowaną postać]
PublicationThe aim of this study is to design a computer application that may assist teachers and therapists in multimodal manner in their work with impaired or disabled children. The application can be operated in many different ways, giving to a child with special educational needs a possibility to learn and train many skills or treat speech disorders. The main stress in this research is on the creation of animated character that will serve...
-
Attributes of Entrepreneurial Teams as Elements of a Mental Model
PublicationAn entrepreneurial team can be defined as a small group of individuals holding ownership or control positions who create or develop an entrepreneurial venture and have shared commitments towards each other. Entrepreneurial teams start numerous new ventures or affect the performance of firms due to their social capital based on some characteristic attributes. The mental models of teams refer to internal, organised representation...
-
Akcelerator transformacji DCT do kompresji obrazu w sensorach wizyjnych
PublicationW komunikacie przedstawiono konfigurowalny cyfrowy akcelerator transformacji DCT przeznaczony dla enkodera wideo standardu H.264. Akcelerator realizuje także odwrotnątransformacjęDCT oraz kwantyzacjęi dekwantyzację. Akcelerator początkowo zaimplementowano w układzie FPGA. Zostałon pomyślnie zweryfikowany, a następnie zaimplementowany w układzie ASIC w technologii UMC 90 nm. Szczegółowe wyniki testów akceleratora ASIC zostały...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublicationPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublicationThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Cross-domain applications of multimodal human-computer interfaces
PublicationDeveloped multimodal interfaces for education applications and for disabled people are presented, including interactive electronic whiteboard based on video image analysis, application for controlling computers with mouth gestures and audio interface for speech stretching for hearing impaired and stuttering people and intelligent pen allowing for diagnosing and ameliorating developmental dyslexia. The eye-gaze tracking system named...
-
Visualization of a lifeboat motion during lowering along ship’s side
PublicationThis paper presents description of a computer program for motion visualization of a lifeboat lowered along ship’s side. The program is a post-processor which reads results of numerical calculations of simulated objects’ motions. The data is used to create scene composed of 3D surfaces to visualize mutual spatial positions of a lifeboat, ship’s side and water waving surface. Since the numerical data contain description of a simulation...
-
Reversible Data Hiding in Encrypted DICOM Images Using Cyclic Binary Golay (23, 12) Code
PublicationIn this paper, a novel reversible data hiding method for encrypted images (RDHEI) is proposed. An efficient coding scheme based on cyclic binary Golay (23, 12) code is designed to embed additional data into the least significant bits (LSBs) of the encrypted image. The most significant bits (MSBs) are used to ensure the reversibility of the embedding process. The proposed scheme is lossless, and based on the receiver’s privileges,...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublicationNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublicationIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublicationThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
How to Sort Them? A Network for LEGO Bricks Classification
PublicationLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition
PublicationThe article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublicationThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublicationThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
A Triplet-Learnt Coarse-to-Fine Reranking for Vehicle Re-identification
PublicationVehicle re-identification refers to the task of matching the same query vehicle across non-overlapping cameras and diverse viewpoints. Research interest on the field emerged with intelligent transportation systems and the necessity for public security maintenance. Compared to person, vehicle re-identification is more intricate, facing the challenges of lower intra-class and higher inter-class similarities. Motivated by deep...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Virtual Whiteboard: A gesture-controlled pen-free tool emulating school whiteboard
PublicationIn the paper the so-called Virtual Whiteboard is presented which may be an alternative solution for modern electronic whiteboards based on electronic pens and sensors. The presented tool enables the user to write, draw and handle whiteboard contents using his/her hands only. An additional equipment such as infrared diodes, infrared cameras or cyber gloves is not needed. The user's interaction with the Virtual Whiteboard computer...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublicationThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
Keystroke Dynamics Patterns While Writing Positive and Negative Opinions
PublicationThis paper deals with analysis of behavioural patterns in human–computer interaction. In the study, keystroke dynamics were analysed while participants were writing positive and negative opinions. A semi-experiment with 50 participants was performed. The participants were asked to recall the most negative and positive learning experiences (subject and teacher) and write an opinion about it. Keystroke dynamics were captured and...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Equal Baseline Camera Array—Calibration, Testbed and Applications
PublicationThis paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Digital fingerprinting for color images based on the quaternion encryption scheme
PublicationIn this paper we present a new quaternion-based encryption technique for color images. In the proposed encryption method, images are written as quaternions and are rotated in a three-dimensional space around another quaternion, which is an encryption key. The encryption process uses the cipher block chaining (CBC) mode. Further, this paper shows that our encryption algorithm enables digital fingerprinting as an additional feature....
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublicationThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm
PublicationThis paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control...
-
A Novel Approach of Using Selected Unconventional Geodesic Methods of Estimation on VTS Areas
PublicationThe Vessel Traffic Service (VTS) systems belong to the fundamental tools used in ensuring a high level of safety across sea basins with heavy traffic, where the presence of navigational hazards poses a great risk of collision or a ship running aground. In order to determine the mutual location of ships, VTS systems obtain information from different facilities, such as coastal radar stations, AIS, and vision systems. Fixing a ship’s...
-
Artificial Intelligence Aided Architectural Design
PublicationTools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...
-
Adam Władziński
PeopleAdam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...
-
The Brick Face of Modernism and Architecture of Gustav Oelsner
PublicationThere are many reasons that make the work of Gustav Oelsner worth to present. One of the reasons is comparison of two different ways of development of two cities, Gdynia (an exhibition of work of Gustav Oelsner was presented in Gdynia in April and May of 2011) and Altona, were Oelsner created his architecture. These two cities has grown at the side of their big neighbours, Gdansk and Hamburg. They are harbour cities and their...
-
Justyna Szostak dr inż.
PeopleI Gdańsk University of Technology: Chair of the Rector’s Internationalization Committee (October 2020 - Present) Erasmus + Coordinator for students and staff members, Faculty of Applied Physics and Mathematics (Mar 2017 - Present) Dean's Proxy for Internationalization, Faculty of Applied Physics and Mathematics (October 2020 - Present) Coordinator of the International Relations Office of the Faculty of Applied Physics and...
-
Application of Wavelet Transform and Fractal Analysis for Esophageal pH-Metry to Determine a New Method to Diagnose Gastroesophageal Reflux Disease
PublicationIn this paper, a new method for analysing gastroesophageal reflux disease (GERD) is shown. This novel method uses wavelet transform (WT) and wavelet-based fractal analysis (WBFA) on esophageal pH-metry measurements. The esophageal pH-metry is an important diagnostic tool supporting the physician’s work in diagnosing some forms of reflux diseases. Interpreting the results of 24-h pH-metry monitoring is time-consuming, and the conclusions...
-
BP-EVD: Forward Block-Output Propagation for Efficient Video Denoising
PublicationDenoising videos in real-time is critical in many applications, including robotics and medicine, where varying light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone...