Filters
total: 658
filtered: 575
Search results for: NANOPOROUS MATERIAL,BATTERIES,ANODE MATERIALS
-
Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins
PublicationPhysical properties and X-ray tomography images of five different granular materials: glass bead, glass grit, short grain white rice, sorghum and clay granules (Seramis) are investigated to select the most promising materials for numerical simulations and time-lapse X-ray tomography imaging. The examined materials represent granular materials of non-biological origin (glass bead, glass grit and Seramis) and granular plant materials...
-
9 - Solid oxide fuel and electrolysis cells
PublicationIn this chapter, the fundamental reactions, the geometrical designs, the material requirements, and the status of SOFCs and SOECs are presented. In the following seven chapters, the most important components of an SOC are described and the chapter ends with a summary and outlook. The described components are: (i) oxygen-ion conductors (electrolyte), (ii) anode materials for SOFCs (cathode in SOEC mode), (iii) cathode materials...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
N-doped carbon materials as electrodes for highly stable supercapacitors
PublicationThis article reports a strategy to use nitrogen-doped carbon materials as electrodes for supercapacitors. Depending on the carbon precursor, the porous structure is changed with specific surface area reached up to 2270 m2 g−1. The capacitance of carbon materials used as electrodes is related strictly to pore size. The microstructure and nitrogen functionalities enable a high capacitance (327 F g−1) and cycle durability. The nanoporous...
-
Badania stabilności chemicznej kompozytowego elektrolitu 3-YSZ-Al2O3 w stosunku do materiałów elektrodowych do zastosowania w średniotemperaturowych ogniwach paliwowych
PublicationJednym z podstawowych wymogów stawianych mate- riałom na elektrolity do średniotemperaturowych ogniw paliwowych IT-SOFC (ang. intermediate-temperature solid oxide fuel cells) jest ich kompatybilność chemiczna z elektrodami w temperaturach zarówno eksploatacji, jak i wytwarzania ogniw. W celu sprawdzenia, czy badany w pracy kompozytowy elektrolit o osnowie z częściowo stabilizowanego ditlenku cyrkonu i z wtrąceniami tlenku glinu...
-
Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries
PublicationThe exploration of natural resources as sustainable precursors affords a family of green materials. Exploring highly abundant and available biowaste precursors remaining from food processing throughout a scalable and cost-effective material synthesis path is highly important especially for new materials discovery in emerging energy storage technologies such as lithium–sulphur (Li–S) batteries. Herein, we have produced a series...
-
Synthesis and characterization of MoS2-carbon based materials for enhanced energy storage applications
PublicationThe article delves into the synthesis and characterization of MoS2-carbon-based materials, holding promise for applications in supercapacitors and ion batteries. The synthesis process entails the preparation of MoS2 and its carbon hybrids through exfoliation, hydrothermal treatment, and subsequent pyrolysis. Various analytical techniques were employed to comprehensively examine the structural, compositional, and morphological properties...
-
Status report on high temperature fuel cells in Poland – Recent advances and achievements
PublicationThe paper presents recent advances in Poland in the field of high temperature fuel cells. The achievements in the materials development, manufacturing of advanced cells, new fabrication techniques, modified electrodes and electrolytes and applications are presented. The work of the Polish teams active in the field of solid oxide fuel cells (SOFC) and molten carbonate fuel cell (MCFC) is presented and discussed. The review is oriented...
-
Copper and cobalt co-doped ceria as an anode catalyst for DIR-SOFCs fueled by biogas
PublicationThe nanocrystalline compounds of Co and Cu co-doped ceria (with up to 20 mol.% of dopants) were fabricated by the reverse microemulsion synthesis method. They were deposited in a form of layers on the surface of SOFC anode in an aim to act as electrochemically active materials for biogas reforming process. Fourier Transformed Infrared Spectroscopy was used to analyze a composition of outlet gases simultaneously with the tests of...
-
Properties of LiMnBO3 glasses and nanostructured glass-ceramics
PublicationPolycrystalline LiMnBO3 is a promising cathode material for Li-ion batteries. In this work, we investigated the thermal, structural and electrical properties of glassy and nanocrystallized materials having the same chemical composition. The original glass was obtained via a standard melt-quenching method. SEM and 7Li solid-state NMR indicate that it contains a mixture of two distinct glassy phases. The results suggest that the...
-
Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming
PublicationSolid oxide fuel cells (SOFCs) are one of the most promising energy conversion devices due to their high efficiency, low pollution and fuel flexibility. Unfortunately, when hydrocarbons are used as a fuel, for example in the form of a biogas, solid carbon can deposit on the anode surface. This process leads to the degradation of the fuel cell performance. A possible solution to this problem is to apply an additional catalytic material,...
-
Enhanced Electrochemical Performance of MnCo1.5Fe0.5O4Spinel for Oxygen Evolution Reaction through Heat Treatment
PublicationMnCo1.5Fe0.5O4 spinel oxide was synthesized using the sol−gel technique, followed by heat treatment at various temperatures (400, 600, 800, and 1000 °C). The prepared materials were examined as anode electrocatalysts for watersplitting systems in alkaline environments. Solid-state characterization methods, such as powder X-ray diffraction and X-ray absorption spectroscopy (XAS), were used to analyze the materials’ crystallographic...
-
Ceramic composites for single-layer fuel cells
PublicationComposite materials consisting of acceptor doped lanthanum orthoniobate electrolyte phase (La0.98Ca0.02NbO4) and Li2O:NiO:ZnO semiconducting phase were synthesized. The precursor powder of La0.98Ca0.02NbO4 was prepared in nanocrystalline (mechanosynthesis) and microcrystalline (solid-state synthesis) form. The composite can be applied in a single-layer fuel cell, because of the presence of two phases acting as an anode and a cathode...
-
Recovery of Pure Lead-Tin Alloy from Recycling Spent Lead-Acid Batteries
PublicationSpent lead–acid batteries have become the primary raw material for global lead production. In the current lead refining process, the tin oxidizes to slag, making its recovery problematic and expensive. This paper aims to present an innovative method for the fire refining of lead, which enables the retention of tin contained in lead from recycled lead–acid batteries. The proposed method uses aluminium scrap to remove impurities...
-
Investigation of praseodymium and samarium co-doped ceria as an anode catalyst for DIR-SOFC fueled by biogas
PublicationThe Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer. The XRD, SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore, the electrical...
-
Enhanced visible light-activated gas sensing properties of nanoporous copper oxide thin films
PublicationMetal oxide gas sensors are popular chemoresistive sensors. They are used for numerous tasks, including environmental and safety monitoring. Some gas-sensing materials exhibit photo-induced properties that can be utilized for enhanced gas detection by modifying the sensor selectivity and sensitivity when illuminated by light. Here, we present the gas sensing characteristics of highly nanoporous Cu2O thin films towards both electrophilic...
-
3D porous graphene-based structures- synthesis and applications
PublicationPorous carbon-based materials are of the great industrial and academic interest due to their high surface area, low density, good electrical conductivity, chemical inertness and low cost of fabrication. Up to now, the main approach to obtain porous carbon structures has involved the pyrolysis of carbonaceous natural or synthetic precursors. After the isolation of graphene, the interest in 3D porous graphene-based structures (called...
-
Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study
PublicationHere, we report on an electrochemical impedance study of silica of organic origin as an active electrode material. The electrode material obtained from carbonized marine biomass containing nanoporous diatoms has been characterised by means of XRD, IR, SEM and EIS. Dif- ferent kinds of crystallographic phases of silica as a result of thermal treatment have been found. The electrode is electrochemically stable during subsequent cyclic...
-
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries
PublicationTin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen...
-
Nanoporous TiO2 electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature
PublicationRecently, fabrication of the nanoporous TiO2 photoelectrode on metal foils by means of sputtering of the Ti film on preheatedmetal substrate followed by the TiO2 deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is...
-
A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics
PublicationIn recent years, portable and wearable personal electronic devices have rapidly developed with increasing mass production and rising energy consumption, creating an energy crisis. Using batteries and supercapacitors with limited lifespans and environmental hazards drives the need to find new, environmentally friendly, and renewable sources. One idea is to harness the energy of human motion and convert it into electrical energy...
-
Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review
PublicationRedox flow batteries (RFBs) are an increasingly attractive option for renewable energy storage, thus providing flexibility for the supply of electrical energy. In recent years, research in this type of battery storage has been shifted from metal-ion based electrolytes to soluble organic redox-active compounds. Aqueous-based organic electrolytes are considered as more promising electrolytes to achieve “green”, safe, and low-cost...
-
The comparison of SrTi0.98Nb0.02O3–δ-CeO2 and SrTi0.98Nb0.02O3–δ-YSZ composites for use in SOFC anodes
PublicationComposites of Nb-doped strontium titanate mixed with yttria-stabilized zirconia or cerium oxide in 50:50, 70:30 and 85:15 weight ratios were evaluated as possible anode/electrolyte interface materials for solid oxide fuel cells in terms of chemical compatibility, electrical conductivity and mechanical properties. It has been shown that composite samples prepared by typical powder-mixing methods remain single-phase up to 1400°C....
-
Ammonium and potassium vanadates: synthesis, physicochemical characterization, and applications
PublicationThis doctoral thesis is devoted to the synthesis and investigation of ammonium/potassium vanadates, which constitute an interesting group of materials due to their potential applications in electrochemical devices and photocatalysis. The scope of the conducted experimental work included the synthesis of ammonium/potassium vanadates, their physicochemical characterization using various methods (spectroscopy, microscopy, thermal...
-
Phase Change Thermal Energy Storage – The Experience of the Materials Preparation for the Specific Applications.
PublicationThermal energy storage and temperature stabilization is very important in many engineering applications. There are three kinds of thermal energy storage: sensible heat storage, latent heat storage and reversible chemical reaction heat storage. Phase change materials (PCM) absorb, store and release large amounts of energy in the form of latent heat, at constant temperature, called the transition temperature. The amount of heat...
-
Metal-Organic Framework (MOF)/Epoxy Coatings: A Review
PublicationEpoxy coatings are developing fast in order to meet the requirements of advanced materials and systems. Progress in nanomaterial science and technology has opened a new era of engineering for tailoring the bulk and surface properties of organic coatings, e.g., adhesion to the substrate, anti-corrosion, mechanical, flame-retardant, and self-healing characteristics. Metal-organic frameworks (MOFs), a subclass of coordinative polymers...
-
Determination of Chemical Diffusion Coefficient of Lithium Ions in Ceramics Derived from Pyrolysed Poly(1,2-dimethylsilazane) and Starch
PublicationThe apparent chemical diffusion coefficient Li+ (DappLI+) in pyrolysed poly(1,2-dimethylsilazane)/starch (PSN/S) (weight ratio: 30/70) ceramic anode composite is determined by galvanostatic intermittent titration technique (GITT). The electrode material composition is C6.00N0.14H0.47O0.12Si0.13. The calculated values of DappLI+, depend on the applied potential, vary from 10-14 to 10-9 [cm2/s]. The diffusion coefficient of lithium...
-
Battery Technologies in Electric Vehicles: Improvements in Electric Battery Packs
PublicationRestrictions on fossil fuels and related environmental pollution issues motivate many organizations and countries to set their focus on electric vehicles (EVs) rather than conventional internal combustion engine vehicles [1], [2]. EVs require an energy storage system to store converted electric power in another form of energy and then reconvert the stored energy to electric power whenever it is required. The energy stored can be...
-
Electrifying the bus network with trolleybus: Analyzing the in motion charging technology
PublicationCurrently, electric buses are becoming more and more popular, and their number in operation is increasing. The range of electric buses is also increasing and solutions that seem to be working almost without fixed infrastructure are being promised. However, this requires the use of high-capacity batteries, which increases the weight and price of the vehicle and causes high costs of battery replacement during operation. Moreover,...
-
Forming Ni-Fe and Co-Fe Bimetallic Structures on SrTiO3-Based SOFC Anode Candidates
PublicationThe aim of this work was to verify the possibility of forming Ni-Fe and Co-Fe alloys via topotactic ion exchange exsolution in Fe-infiltrated (La,Sr,Ce)0.9(Ni,Ti)O3-δ or (La,Sr,Ce)0.9(Co,Ti)O3-δ ceramics. For this purpose, samples were synthesized using the Pechini method and then infiltrated with an iron nitrate solution. The reduction process in dry H2 forced the topotactic ion exchange exsolution, leading to the formation of...
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
Electrochemical Activity of Electrode Material Consisting of Porous Copper and Silica Aerogel
PublicationElectrochemically obtained copper was combined with silica aerogel (SiO2ag). Obtained composite (SiO2@Cu/CuxOy) was tested as an electrode in contact with LiPF6 in EC/DMC electrolyte. The electrochemical measurements showed the presence of complex redox couple activities of SiO2@Cu/CuxOy. This experiment was employed to help in understanding the carbon role used as an electric contact for silica in Li-Ion batteries and clarify...
-
Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P
PublicationIn the last fewyears the idea of circular economy has become essential. Thus, designing methods of nutrients removal should be based on usingmaterials that make it possible to recover those nutrients. Recently,methods applied in wastewater treatment plants cannot provide optimal results; moreover, the application of commercial coagulants like ferric chloride and polyaluminumchloride can cause difficulties in potential recovery...
-
Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate
PublicationNanomaterials and assemblies of the aforementioned into complex architectures constitute an opportunity to design efficient and selective solutions to wide spread and emerging environmental issues. The limited disposal of organic matter in modern landfills generates extremely concentrated leachates characterised by high concentrations of refractory compounds. Conventional biochemical treatment methods are unsuitable, while advanced...
-
Electrochemical behavior of a composite material containing 3D-structured diatom biosilica
Publication3D-structured diatom biosilica mixed with conducting carbon black was investigated as an active electrode material for lithium-ion batteries. Diatom biosilica was obtained by cultivation of the selected diatom species under laboratory conditions. Several instrumental techniques (XRD, FTIR, Raman, SEM-EDX, TGA) were used to characterize the physicochemical properties of applied biosilica. It was evidenced that the prepared new composite...
-
The influence of synthesis method on the microstructure and catalytic performance of Y 0.07 Sr 0.93 Ti 0.8 Fe 0.2 O 3-δ in synthetic biogas operated solid oxide fuel cells
PublicationThe Y0.07Sr0.93Ti0.8Fe0.2O3-δ (YSTF) material was fabricated using three different synthesis methods: modified polymer precursor method (MPP), Pechini method and a solid state reaction method. It was applied as an anode catalytic material for biogas reforming in solid oxide fuel cells. Clear differences in the microstructure of fabricated catalytic layers were found, mainly with respect to a grain size and distribution of grains....
-
ENVIRONMENTALLY FRIENDLY MATERIALS IN ARCHITECTURE � MODERN TRENDS AND DEVELOPMENT DIRECTIONS
PublicationFor a long time the interest in environmentally friendly materials in architecture is no longer limited to the use of renewable and natural substances such as wood, stone, straw, or reusable materials, such as metals or glass. Today the so-called naturals and the materials compatible with the idea of sustainability constantly appear on the market in new forms. Increasing awareness of the necessity to limit the building sector’s...
-
Certified Reference Material - as a necessary tool for the quality control and quality assurance of measurements
PublicationReference materials are necessary to control and ensure the quality of the measurements. The demand for analytical information on the composition of different material objects makes it necessary to produce an even wider range of materials.
-
Electrochemical degradation of textile dyes in a flow reactor: effect of operating conditions and dyes chemical structure
PublicationIn this study, electrochemical oxidation of five azo dyestuffs (Yellow D-5GN, Red D-B8, Ruby F-2B, Blue D-5RN, Black DN), that are widely used in the textile industry, was investigated in a flow reactor. BDD electrode with a high boron doping level (C/B = 10 000) was prepared and used. Two configurations of reactor were considered, i.e., one with the undivided cell, and the other with the cell divided by anodic and cathodic compartments....
-
Pressure in charge. Neglected parameter in hydrothermal synthesis turns out to be crucial for electrochemical properties of ammonium vanadates
PublicationAmmonium vanadates are of great interest as they exhibit unusual electrical and sensory properties.(NH4)2V6O16and (NH4)2V10O25$8H2O with various morphology were obtained in the hydrothermalsynthesis under controlled temperature and pressure. It was shown, that the pure (NH4)2V10O25$8H2Owas obtained under 50 bar of initial pressure, whereas lower pressure lead to the mixture of twocompounds. The influence of the pressure was studied...
-
Stability analysis of a dike constructed of anthropogenic materials
PublicationNumerical analyses of stability are presented for a hypothetical dikes constructed of dredged materials and bottom ash, in varying proportions. The paper is related to the international research project DredgDikes, which focused on the use of anthropogenic materials in dikes construction and flood protection. The aim of this project was to investigate the possibility of using anthropogenic materials from rivers and sea dredging...
-
Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials
PublicationThe important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are...
-
Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury
PublicationReference materials (RMs) play an important role in all elements of the quality assurance system of measurements. In this work, ``package'' 4 new CRMs (bottom sediment, herring tissue, cod tissue, cormorant tissue) were prepared and characterised to carry out the quality control in monitoring analysis of mercury and methylmercury in environmental samples. Materials - candidates were collected in Poland and south part of the Czech...
-
The Effect of Increasing the Amount of Indium Alloying Material on the Efficiency of Sacrificial Aluminium Anodes
PublicationAl-Zn-In alloys having 4.2% zinc content and various indium content in the range of 0.02–0.2% were tested with respect to the most important electrochemical properties of sacrificial anodes in a cathodic protection, i.e., the current capacity and potential of the operating anode. The distribution of In and Zn in the tested alloys was mapped by means of the EDX technique, which demonstrated that these elements dissolve well in the...
-
Flexible dye-sensitized solar cells based on Ti/TiO2 nanotubes photoanode and Pt-free and TCO-free counter electrode system
PublicationFlexible dye-sensitized solar cells (DSSCs) are getting more attention compared to standard glass covered DSSCs due to their unique commercial applications (e.g. tents or sail surfaces) and the possibility of rolling up into a small, portable device. In this work, titania nanotubes (TiO2 NT) modified with titania nanoparticles (TiO2 NP) were photoelectrochemically characterized as an anode for flexible dye-sensitized solar cells....
-
Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review
PublicationLaser surface modification is a widely available and simple technique that can be applied to different types of materials. It has been shown that by using a laser heat source, reproducible surfaces can be obtained, which is particularly important when developing materials for medical applications. The laser modification of titanium and its alloys is advantageous due to the possibility of controlling selected parameters and properties...
-
Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review
PublicationLaser surface modification is a widely available and simple technique that can be applied to different types of materials. It has been shown that by using a laser heat source, reproducible surfaces can be obtained, which is particularly important when developing materials for medical applications. The laser modification of titanium and its alloys is advantageous due to the possibility of controlling selected parameters and properties...
-
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
PublicationMXenes, a novel large family of 2D transition metal carbides, carbonitrides and nitrides are currently a “hot topic” in science due to their several fascinating physical and chemical properties. It follows from a rich diversity of their elemental compositions and chemical functionalities. MXenes can form composites with many substances, including polymers or metal oxides, which allows to effective “tune” MXene characteristics to...
-
Synthesis and Characterization of Poly(zwitterionic) Structures for Energy Conversion and Storage
PublicationZwitterions are unique class of molecules that possess two functional groups bearing electric charges, one positive and second negative. This setup results in peculiar properties such as high water retention and anti-fouling capability. Therefore, zwitterionic coatings and gels are commonly applied in e.g. biosensing and bioelectronic devices. Despite those applications, there are other perspectives for zwitterionic materials....
-
Przegląd nanododatków stosowanych w warstwach asfaltowych nawierzchni drogowych
PublicationJednym z kierunków rozwoju technologii materiałowych jest nanotechnologia rozumiana jako dziedzina zajmująca się zastosowaniem nanododatków do wytwarzania nowych materiałów oraz ich wpływem na parametry modyfikowanych materiałów. W ostatnich latach nanotechnologia wkracza do technologii modyfikacji asfaltów stosowanych w nawierzchniach drogowych. W artykule przedstawiono stosowane obecnie w budownictwie drogowym nanododatki oraz...