Filters
total: 1281
displaying 1000 best results Help
Search results for: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Internet photogrammetry as a tool for e-learning
PublicationAlong with Internet development, there were interactive applications which allow for remote sensing and photogrammetric analysis. An example of an application that can provide Earth images and make it possible to measure distances in these images is Google Earth. The authors, who have experience from 2001-2015 argue that it is possible and it is important to create more advanced photogrammetric network applications. In this there...
-
Innovative e-learning approach in teaching based on case studies - Innocase project
PublicationThe article presents the application of innovative e-learning approach for the creation of case study content. Case study methodology is becoming more and more widely applied in modern education, especially in business and management field. Although case study methodology is quite well recognized and used in education, there are still few examples of developing e-learning content on the basis of case studies. This task is to be...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublicationThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublicationWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublicationThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Measurement of the Development of a Learning IT Organization Supported by a Model of Knowledge Acquisition and Processing
PublicationThe paper presents a model of knowledge acquisition and processing for the development of learning organizations. The theory of a learning organization provides neither metrics nor tools to measure its development The authors' studies in this field are based on their experience gathered after projects realized in real IT organizations. The authors have described the construction of the model and the methods of its verification...
-
Towards Scalable Simulation of Federated Learning
PublicationFederated learning (FL) allows to train models on decentralized data while maintaining data privacy, which unlocks the availability of large and diverse datasets for many practical applications. The ongoing development of aggregation algorithms, distribution architectures and software implementations aims for enabling federated setups employing thousands of distributed devices, selected from millions. Since the availability of...
-
Organizational Wisdom: The Impact of Organizational Learning on the Absorptive Capacity of an Enterprise
PublicationPurpose: In this article, we analyze the concept of organizational wisdom, indicating its key elements and verifieng the relationships between them. Design/Methodology/Approach: The study was conducted at Vive Textile Recycling Sp. z o.o in Poland. Empirical data was collected from 138 managers using the PAPI technique. Structural equation modelling (SEM) was performed to test the research hypotheses. Additionally, the significance...
-
A Highly Scalable, Modular Architecture for Computer Aided Assessment e-Learning Systems
PublicationIn this chapter, the authors propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. The authors' research proved that such architecture, while well suited for didactic content distribution systems is ill-suited for knowledge...
-
E-Learning Service Management System For Migration Towards Future Internet Architectures
PublicationAs access to knowledge and continuous learning are among the most valuable assets in modern, technological society, it is hardly surprising that e-learning solutions can be counted amongst the most important groups of services being deployed in modern network systems. Based on analysis of their current state-of-the-art, we decided to concentrate our research and development work on designing and implementing a management system...
-
Continuous learning as a method of raising qualifications – the perspective of workers, employers and training organizations
PublicationContinuous learning is discussed in strategic documents of Poland and the European Union. In Poland, the idea of continuous learning is not very popular. However, in the context of strong competition in the labour market and the progressive globalization processes, the skills issue takes on new meaning — both for employees and employers. In order to adapt skills to labour market needs it is necessary to conduct adequate studies...
-
Multimedia industrial and medical applications supported by machine learning
PublicationThis article outlines a keynote paper presented at the Intelligent DecisionTechnologies conference providing a part of the KES Multi-theme Conference “Smart Digital Futures” organized in Rome on June 14–16, 2023. It briefly discusses projects related to traffic control using developed intelligent traffic signs and diagnosing the health of wind turbine mechanisms and multimodal biometric authentication for banking branches to provide...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
Discovering Rule-Based Learning Systems for the Purpose of Music Analysis
PublicationMusic analysis and processing aims at understanding information retrieved from music (Music Information Retrieval). For the purpose of music data mining, machine learning (ML) methods or statistical approach are employed. Their primary task is recognition of musical instrument sounds, music genre or emotion contained in music, identification of audio, assessment of audio content, etc. In terms of computational approach, music databases...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublicationIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublicationOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
Computational Simulation of the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublicationThis chapter investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organisational culture results in better mistake management and thus better organisational learning, (2) Effective organisational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader’s behavior must align for the best learning...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublicationThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Ireneusz Czarnowski Prof.
PeopleIRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublicationFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublicationThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
An integrated e-learning services management system providing HD videoconferencing and CAA services
PublicationIn this paper we present a novel e-learning services management system, designed to provide highly modifiable platform for various e-learning tools, able to fulfill its function in any network connectivity conditions (including no connectivity scenario). The system can scale from very simple setup (adequate for servicing a single exercise) to a large, distributed solution fit to support an enterprise. Strictly modular architecture...
-
WEB-CAM AS A MEANS OF INFORMATION ABOUT EMOTIONAL ATTEMPT OF STUDENTS IN THE PROCESS OF DISTANT LEARNING
PublicationNew methods in education become more popular nowadays. Distant learning is a good example when teacher and student meet in virtual environment. Because interaction in this virtual world might be complicated it seems necessary to assure as much methods of conforming that student is still engaged in the process of learning as it is possible. We would like to present assumption that by means of web-cam we will be able to track facial...
-
Deep learning for ultra-fast and high precision screening of energy materials
PublicationSemiconductor materials for energy storage are the core and foundation of modern information society and play important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap (the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the...
-
Wisdom from Experience Paradox: Organizational Learning, Mistakes, Hierarchy and Maturity Issues
PublicationOrganizations often perceive mistakes as negligence and low-performance indicators, yet they can be a precious learning resource. However, organizations cannot learn from mistakes if they have not accepted them. This study aimed to explore how organizational hierarchy and maturity levels influence the relationship between mistakes acceptance and the ability to change. A sample composed of 380 Polish employees working in knowledge-driven...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublicationBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
THE ONLINE APPLICATION AND E-LEARNING IN THE COMPETENCE-BASED MANAGEMENT IN PUBLIC ADMINISTRATION ORGANIZATIONS
PublicationThe integration of effective management of work-related processes and utilization of human resources potential leads to the development of organization. The purpose of this paper was to examine how the principles of competences-based management can be introduced to enhance organization’s effectiveness in human resources management. A model of assessment and development of competences-based management, embracing an online application...
-
Concrete mix design using machine learning
PublicationDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublicationIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublicationThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublicationAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Supporting First Year Students Through Blended-Learning - Planning Effective Courses and Learner Support
PublicationHigher education has been actively encouraged to find more effective and flaxible delivery models to provide all students with access to good quality learning experiences. This paper describes students opinion about using e-learning techniques and their participation in courses provided in different ways as additional help and expectations of first year students.
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Vident-real: an intra-oral video dataset for multi-task learning
Open Research DataWe introduce Vident-real, a large dataset of 100 video sequences of intra-oral scenes from real conservative dental treatments performed at the Medical University of Gdańsk, Poland. The dataset can be used for multi-task learning methods including:
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change: with Focus on Organizational Culture and Organizational Learning
PublicationTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change with Focus on Organizational Culture and Organizational Learning
PublicationTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Open source solution LMS for supporting e-learning/blended learning engineers
PublicationW artykule zaprezentowano darmowe systemy zarządzania kształceniem na odległość wspomagające e-learningowe/mieszane nauczanie inżynierów. Pierwszy system TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). System TeleCAD był propozycją w projekcie V Ramowy CURE (2003-2006). W roku 2003 dzięki projektowi Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej wybrało system...
-
Distance learning trends: introducing new solutions to data analysis courses
PublicationNowadays data analysis of any kind becomes a piece of art. The same happens with the teaching processes of statistics, econometrics and other related courses. This is not only because we are facing (and are forced to) teach online or in a hybrid mode. Students expect to see not only the theoretical part of the study and solve some practical examples together with the instructor. They are waiting to see a variety of tools, tutorials,...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublicationVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublicationThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
User -friendly E-learning Platform: a Case Study of a Design Thinking Approach Use
PublicationE-learning systems are very popular means to support the teaching process today. These systems are mainly used by universities as well as by commercial training centres. We analysed several popular e-learning platforms used in Polish universities and find them very unfriendly for the users. For this reason, the authors began the work on the creation of a new system that would be not only useful, but also usable for students, teachers...
-
Training of Deep Learning Models Using Synthetic Datasets
PublicationIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...