Filters
total: 491
Search results for: OXIDE REDUCTION
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
New plasmonic platform for enhanced luminescence of Valrubicin
PublicationLuminescence enhanced by new structure of plasmonic platform with aluminum oxide (Al2O3) buffer layer deposited on gold nanostructures is investigated. Regularly distributed gold nanostructures of average dimension of 50 nm formed the active part of plasmonic platforms. They were manufactured on Corning 1737 glass substrate by melting of gold thin film. The nanostructures were coated by dielectric Al2O3 thin film with thickness...
-
Effect of Variation of Hard Segment Content and Graphene-Based Nanofiller Concentration on Morphological, Thermal, and Mechanical Properties of Polyurethane Nanocomposites
PublicationThis study describes the development of a new class of high-performance polyurethane elastomer nanocomposites containing reduced graphene oxide (RGO) or graphene nanoplatelets (GNP). Two types of polyurethane elastomers with different contents of hard segments (HS) were used as a polymer matrix. The developed nanocomposites were characterized by thermal analysis (DSC, TG), dynamic mechanical testing (DMA), hardness testing, mechanical...
-
Peroxymonosulfate-assisted photocatalytic degradation of artificial sweeteners in water
PublicationIn the present study, peroxymonosulfate (PMS) activation was proposed for efficient photocatalytic degradation of aspartame, acesulfame, saccharin, and cyclamate - artificial sweeteners frequently present in wastewaters and surface waters worldwide. The TiO2 nanosheets with exposed {0 0 1} facets were synthesised using the fluorine-free lyophilisation technique as a green concept for the synthesis and used for the photodegradation...
-
ZnO ALD-Coated Microsphere-Based Sensors for Temperature Measurements
PublicationIn this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature measurements between 100 and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in real-time, which allows for higher accuracy during...
-
OPTIMALIZATION OF SORBENT FEEDING IN THE DRY METHOD OF FLUE GAS DESULFURIZATION
PublicationThe swiftly developing sea transport contributes to a considerable increase of fuel usage in the international shipping, which results in the escalation of toxic compounds emitted into the atmosphere. It is followed by the constantly heightened requirements limiting those emissions. In the case of sulfur oxide emission, inside of SECA (Sulfur Emission Control Area), the maximum content of sulfur in the shipping fuels used on the...
-
Recent Advances in Graphene Oxide-Based Membranes for Heavy Metal Ions Separation
PublicationGraphene oxide (GO)-based membranes have been widely investigated for separation of dyes, salt ions, heavy metal ions, and biomolecules due to their high mechanical strength, single-layered structure, large surface area, and high affinity. However, due to irregular pore structure, nanochannels, interlayer distance, easy functionalization, swelling effect, and chemical stability under aqueous environment limited their separation...
-
High temperature corrosion resistance of porous hastelloy alloy
PublicationTo further understand the suitability of Ni-Cr-base alloy for solid oxide fuel cell (SOFC), a commercial Ni-Cr-Fe-Mo alloy, Hastelloy X was selected and evaluated for oxidation behaviour under high temperature conditions. HastelloyX was chosen due to its unusual resistance to oxidizing, reducing and neutral atmospheres. For long term stability of metal supported fuel cell, the corrosion resistance plays a vital role and must be...
-
Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide
PublicationMicroporous polyurethanes (MPU) were modified by adding 0.25%–1.25 wt% of reduced graphene oxide (RGO). The materials were prepared without solvent via in situ polymerization. From a technological point of view, it is very important to obtain functional materials by using reacting compounds only. The thermal characteristics of obtained MPU were investigated using TGA, DSC, and DMA techniques. In comparison to nonmodified microporous...
-
LaNi1-xCoxO3-δ(x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration
PublicationPerformance of LaNi 1-x Co x O 3−δ (LNC) (x=0.4 to 0.7) as a cathode in solid oxide fuel cell (SOFC) is evaluated. Symmetrical cathode/electrolyte/cathode cells for electrochemical testing are prepared by infiltration of yttria stabilized zirconia (YSZ) backbone with LNC solutions. It is showed that the cathode infiltrated with LaNi 0.5 Co 0.5 O 3−δ (LNC155) has the lowest polarization resistance and activation energy, 197 mΩ cm...
-
Protein thermal stabilization in aqueous solutions of osmolytes
PublicationProteins’ thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared...
-
Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C
PublicationIn this study two materials, MnCo2O4 and MnCo1.8Fe0.2O4 are studied as potential protective coatings for Solid Oxide Fuel Cell interconnects working at 750 °C. First powder fabrication by a modified Pechini method is described followed by a description of the coating procedure. The protective action of the coating applied on Crofer 22 APU is evaluated by following the area specific resistance (ASR) of the scale/coating for 5500...
-
Synthesis, single crystal growth and properties of Sr5Pb3ZnO12
PublicationAbstract The novel Sr5Pb3ZnO12 oxide was synthesized by the solid-state reaction method. The crystal structure was studied by means of the powder x-ray diffraction Rietveld method and was found to be similar to 3 other previously known Sr5Pb3MO12 compounds (M = Co, Ni, Cu). Crystals of several hundred microns in size of the new phase were grown in molten sodium chloride and imaged using confocal optical and scanning electron microscopy....
-
Interaction of SrTi0.65Fe0.35O3-δ with LaNi0.6Fe0.4O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.8Gd0.2O2-δ
PublicationIron doped strontium titanates SrTi1-xFexO3-δ are perovskites of versatile properties. They can be used in solid oxide fuel cells or high temperature oxygen sensors. Their reactivity with electrolyte materials, cathode buffer layer materials, other cathode materials or current collector layers has not been fully tested. In this study we use X-ray diffraction to check SrTi0.65Fe0.35O3-δ compatibility with Ce0.8Gd0.2O2-δ (used as...
-
Formation enthalpies of LaLn׳O3 (Ln׳=Ho, Er, Tm and Yb) interlanthanide perovskites
PublicationHigh-temperature oxide melt solution calorimetry using 3Na2O·MoO3 at 802 °C was performed for interlanthanide perovskites LaLn׳O3 (Ln׳=Ho, Er, Tm and Yb) and lanthanide oxides (La2O3, Ho2O3, Er2O3, Tm2O3 and Yb2O3). The enthalpies of formation of these interlanthanide perovskites from binary lanthanide oxides at room temperature (25 °C) were determined to be −8.3±3.4 kJ/mol for LaHoO3, −9.9±3.0 kJ/mol for LaErO3, −10.8±2.7 kJ/mol...
-
Spectral reflectance modeling of ZnO layers made with Atomic Layer Deposition for application in optical fiber Fabry-Perot interferometric sensors
PublicationSuitability of zinc oxide (ZnO) layers grown using Atomic Layer Deposition for operation in optical-fiber extrinsic Fabry-Perot sensors is investigated using a numerical model. Reflectance spectra obtained using the developed model indicate that the application of these layers in optical-fiber extrinsic Fabry-Perot sensors is difficult as it may require a source whose spectrum width is about 300 nm. A series of ZnO layers grown...
-
Evaluation of adhesive forces and the specific surface energy of zirconia stabilized by yttria with alumina additions ceramic by AFM method
PublicationThe adhesive forces and the specific surface energy of ceramic material surfaces are very important for further tribological and biomedical applications of ceramics. Partially stabilized zirconia (zirconium oxide) is popular for manufacturing various medical products. ZrO2 stabilized by Y2O3 with additions of 5 wt% alumina was produced by slip casting method with a subsequent sintering. Structure and chemical composition of ceramic...
-
The influence of synthesis method on the microstructure and catalytic performance of Y 0.07 Sr 0.93 Ti 0.8 Fe 0.2 O 3-δ in synthetic biogas operated solid oxide fuel cells
PublicationThe Y0.07Sr0.93Ti0.8Fe0.2O3-δ (YSTF) material was fabricated using three different synthesis methods: modified polymer precursor method (MPP), Pechini method and a solid state reaction method. It was applied as an anode catalytic material for biogas reforming in solid oxide fuel cells. Clear differences in the microstructure of fabricated catalytic layers were found, mainly with respect to a grain size and distribution of grains....
-
Microsphere structure application for supercapacitor in situ temperature monitoring
PublicationConstant, real-time temperature monitoring of the supercapacitors for efficient energy usage is in high demand and seems to be crucial for further development of those elements. A fiber-optic sensor can be an effective optoelectronic device dedicated for in-situ temperature monitoring of supercapacitors. In this work, the application of the fiber-optic microstrucutre with thin zinc oxide (ZnO) coating fabricated in the atomic layer...
-
A Comprehensive Experimental and Theoretical Study on the[{(η5-C5H5)2Zr[P(µ-PNEt2)2P(NEt2)2P]}2O Crystalline System
PublicationThe structure of tetraphosphetane zirconium complex C52H100N8OP10Zr21 was determined by single crystal X-ray diffraction analysis. The crystal belongs to the monoclinic system, space group P21/c, with a = 19.6452(14), b = 17.8701(12), c = 20.7963(14)Å, α = γ = 90°, β = 112.953(7)°, V = 6722.7(8)Å3, Z = 4. The electronic structure of the organometallic complex has been characterized within the framework of Quantum Chemical Topology....
-
Does the low optical band gap of yellow Bi3YO6 guarantee the photocatalytical activity under visible light illumination?
PublicationBi3YO6, which is known as an ionic conductor, was tested here as an electrode and photoanode in contact with aqueous electrolytes. Bi3YO6 was deposited onto the Pt substrate and the such prepared electrode was polarized in various aqueous electrolytes. The optical energy band gap of the material equal to 1.89 eV was determined using the Kubelka-Munk function resulting from the UV-Vis spectrum (allowed indirect transition) and also...
-
Microfluidic devices for photo-and spectroelectrochemical applications
PublicationThe review presents recent developments in electrochemical devices for photo- and spectroelectrochemical investigations, with the emphasis on miniaturization (i.e., nanointerdigitated complementary metal-oxide-semiconductor devices, micro- and nano-porous silicon membranes or microoptoelectromechanical systems), silica glass/microreactors (i.e., plasmonic, Raman spectroscopy or optical microcavities) or polymer-based devices (i.e.,...
-
Enhanced Electrochemical Performance of MnCo1.5Fe0.5O4Spinel for Oxygen Evolution Reaction through Heat Treatment
PublicationMnCo1.5Fe0.5O4 spinel oxide was synthesized using the sol−gel technique, followed by heat treatment at various temperatures (400, 600, 800, and 1000 °C). The prepared materials were examined as anode electrocatalysts for watersplitting systems in alkaline environments. Solid-state characterization methods, such as powder X-ray diffraction and X-ray absorption spectroscopy (XAS), were used to analyze the materials’ crystallographic...
-
Flexural behavior of composite structural insulated panels with magnesium oxide board facings
PublicationThe current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include...
-
X-RAY DIFFRACTION STUDY OF BISMUTH LAYER-STRUCTURED MULTIFERROIC CERAMICS
PublicationGoal of the present research was to apply a solid state reaction route to fabricate bismuth layer-structured multiferroic ceramics described with the formula Bi5FeTi3O15 and reveal the influence of processing conditions on its crystal structure and phase composition. Simple oxide powders Bi2O3, TiO2 and Fe2O3 were used to fabricate Aurivillius-type bismuth layer-structured ferroelectrics. Pressureless sintering in ambient air was...
-
The hydration properties of protein stabilizer, trimethylamine-N-oxide in aqueous solutions of N-methylacetamide – The volumetric and compressibility studies between 288.15 and 308.15 K
PublicationApparent molar volumes and apparent molar isentropic compressions of the protein stabilizer, trimethylamine-N-oxide (TMAO) were determined from the densities and speed of sound measured at T = (288.15, 298.15 and 308.15) K in aqueous solutions of N-methylacetamide (NMA) at four different concentrations (2, 4, 6 and 8 mol/kg). The concentration dependencies of the calculated quantities extrapolated to the infinite dilution lead...
-
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
PublicationIn this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (GOx) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes’ properties...
-
Analogue CMOS ASICs in Image Processing Systems
PublicationIn this paper a survey of analog application specific integrated circuits (ASICs) for low-level image processing, called vision chips, is presented. Due to the specific requirements, the vision chips are designed using different architectures best suited to their functions. The main types of the vision chip architectures and their properties are presented and characterized on selected examples of prototype integrated circuits (ICs)...
-
Wykorzystanie fourierowskiej spektroskopii w podczerwieni do badania stężenia gazów wylotowych z tlenkowego ogniwa paliwowego zasilanego biogazem
PublicationW dzisiejszych czasach bardzo ważne jest pozyskiwanie energii ze źródeł odnawialnych i bezpiecznych dla środowiska. Jedną z obiecujących technologii są tlenkowe ogniwa paliwowe (ang. Solid Oxide Fuel Cell, SOFC). Stanowią one bezpieczną i ekologiczną alternatywę dla energii uzyskanej z paliw kopalnych. SOFC charakteryzuje się sprawnością energetyczną na poziomie 45-60 %, podczas gdy sprawność klasycznych elektrowni cieplnych nie...
-
Influence of synthesis conditions on zinc oxide nanorode layer morphology
PublicationIn recent years one dimensional (1D) nanostructures (nanotubes, nanowires, nanoribbons and nanorods) have been widely studied. Among studied nano-materials, the greatest interest can be seen for zinc oxide (ZnO). However, there is still a need for simple, inexpensive and reproducible fabrication method. In the literature different fabrication methods can be found, most of them requires expensive equipment and involve complex...
-
Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications
PublicationThe zirconium alloys used in nuclear industry include mainly ZreSn and ZreNb alloys ofdifferent chemical composition, microstructure and susceptibility to both hydrogendegradation and oxidation. The hypothetic nuclear accidents can create a real danger tothe Zr alloys and stability of parts made of these alloys, and especially such as loss ofcoolant accident (LOCA) and reactivity initiated accidents (RIA). The hydrogen degradationcan...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Determination of pseudocapacitance chan ges of nickel oxide NiO electrode with use of dynamic electrochemical impedancje spectroscopy
PublicationThe electrochemical capacitors (ECs) are attractive energy storage devices which can be applied in many electronic products (e.g., cameras, laptops, cell phones) or hybrid electric vehicles (HEV). The energy storage in ECs is based on capacitive (the electrical double layer charging/discharging) and pseudocapacitive (additional charge provided by faradic reaction) phenomena. Considering the electrodes exhibiting pseudocapacitance,...
-
Inhibition of amyloid fibril formation of hen egg white lysozyme by trimethylamine N-oxide at low pH
PublicationIn vitro inhibition of the formation of fibrous aggregates of proteins (amyloids) has gained increasing attention due to the number of diseases associated with protein misfolding and fibrillation. An interesting group of compounds for which pronounced activity against this phenomenon can be expected consists of low molecular weight substances (osmolytes) which have the ability to change protein stability. Here we investigate the...
-
Effect of operating conditions on N 2 O production in an anammox sequencing batch reactor containing granular sludge
PublicationNitrous oxide (N2O) is one of the gases with the greatest impact in the atmosphere due to its persistence and significant contribution to the greenhouse effect. This study provides an insight into the dynamics of N2O production in wastewater nitrogen removal systems. A 10 L sequencing batch reactor containing enriched anammox biomass was subjected to different operational conditions, i.e., temperature, feed time, NO2 /NH4 þ ratio...
-
Effective yttrium based coating for steel interconnects of solid oxide cells: Corrosion evaluation in steam-hydrogen atmosphere
PublicationThis work describes manufacture, analysis and test of a new well conducting corrosion-protection coating that can be applied on steel types with high chromium content. Electrolytic deposition of yttrium salts is used to form thin (<100 nm) coatings on both flat steel sheets (material: Crofer 22 APU) and its properties are proven on woven wire-meshes (materials from two different sources: SUS316 and SUS316L). The oxide scale on...
-
Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C
PublicationThis paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly...
-
Development of Microstructured Carbon Coatings by Substrate-Catalytic CVD
PublicationCarbon nanostructured films were synthesized by chemical vapor deposition (CVD) on H18 stainless steel (AISI 440C) sheets with an H2/CH4/N2 gas mixture at various substrate temperatures. During the synthesis, the iron and chromium oxide layer was formed between the steel and carbonaceous layer. The carbon films exhibited wall-like and spherical morphologies and structures, as characterized by scanning electron microscopy and Raman...
-
Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications
PublicationIn this work we study the luminescence properties of europium-doped titanium dioxide and tellurium oxide thin films enhanced by gold plasmonic nanostructures. We propose a new type of plasmon structure with an ultrathin dielectric film between plasmonic platform and luminescent material. Plasmonic platforms were manufactured through thermal annealing of the gold thin film. Thermal dewetting of gold film results in spherical gold...
-
Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons—A Review
PublicationDry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Currently used nickel catalysts on oxide supports suffer from rapid deactivation due to sintering of active metal particles or the deposition of carbon deposits blocking the flow of gases through the reaction tube. In this view,...
-
Sustainable energy system combined biogas-feedSolid Oxide Fuel Cell and Microalgae technology
PublicationIn the new frontier of energy and environmental safety, new efficient and clean safe energy conversion systems are required. In this sense, the present work is framed within the context of Circular Economy and proposes a multidisciplinary study for the development of more efficient, economically viable and non-polluting energy conversion systems, based on the synergetic combination of different technologies: fuel cells, biofuels,...
-
Effects of Surface Pretreatment of Titanium Substrates on Properties of Electrophoretically Deposited Biopolymer Chitosan/Eudragit E 100 Coatings
PublicationThe preparation of the metal surface before coating application is fundamental in determining the properties of the coatings, particularly the roughness, adhesion, and corrosion resistance. In this work, chitosan/Eudragit E 100 (chit/EE100) were fabricated by electrophoretic deposition (EPD) and both their microstructure and properties were investigated. The present research is aimed at characterizing the effects of the surface...
-
Novel two-step synthesis method of thin film heterojunction of BiOBr/Bi2WO6 with improved visible-light-driven photocatalytic activity
PublicationA novel two-step ionic liquid assisted procedure was applied for a controllable synthesis of BiOBr/Bi2WO6 heterojunction thin films. The preparation route involved an anodic oxidation of tungsten foil and hydrothermal transformation of as-anodized oxide in the presence of bismuth precursor and ionic liquid, N-butylpyridinium bromide [BPy][Br]. The BiOBr plates with irregular shapes adhered to the surface of flower-like Bi2WO6 and...
-
Synthesis of isotactic polypropylene- block -polystyrene block copolymers as compatibilizers for isotactic polypropylene/polyphenylene oxide blends
PublicationPoly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and isotactic polypropylene (iPP) are highly incompatible and consequently their uncompatibilized blends are quite brittle regardless of the molecular weights and ductility of the individual components. Isotactic polypropylene-polystyrene block copolymers, to be applied as compatibilizers for a broad range of PPO/iPP blend compositions, were prepared by mechanism transformation from...
-
Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films
PublicationIn this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes,...
-
Influence of High Temperature Oxidation on Hydrogen Absorption and Degradation of Zircaloy-2 and Zr 700 Alloys
PublicationThe present research was aimed at determining the effects of the oxide layers on hydrogen absorption, microstructure and mechanical properties of the Zircaloy- 2 and Zr 702 alloys. The oxidation was made at 350 °C, 700 °C and 900 °C for 10 to 30 min in laboratory air, followed by hydrogen cathodic charging for 72 h and annealing at 400 °C for 4 h. The slow strain rate tests were carried out on oxidized, charged and annealed specimens. The...
-
Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode
PublicationIn this work we discuss the application of optical fiber sensors based on lossy-mode resonance (LMR) phenomenon for real-time optical monitoring of electrochemical processes. The sensors were obtained by a reactive high power impulse magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. The LMR effect made monitoring of changes in optical properties of both ITO and its surrounding medium...
-
Hydrogen Production Mechanism in Low-Temperature Methanol Decomposition Catalyzed by Ni3Sn4 Intermetallic Compound: A Combined Operando and Density Functional Theory Investigation
PublicationHydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution...
-
Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors
PublicationThe aim of this work is review of tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant,...
-
Application analysis of a hybrid solid oxide fuel cell-gas turbine system for marine power plants
PublicationThe results of theoretical studies of the possibilities of using hybrid solid oxide fuel cell–gas turbine (SOFC-GT) systems for marine power plants are presented. A 500 kW auxiliary marine power plant scheme using stacks of SOFCs in combination with a regenerative gas turbine operating with over-expansion based on our recent patent application is proposed. The results of mathematical modelling showed the opportunity to obtain a...