Search results for: catalyst
-
Micellar Route of the Synthesis of Alkyl Xylosides: An Unexpected Effect of Amphiphilic Imidazolium Ionic Liquids
PublicationThis manuscript presents results from the investigation on the synthesis of alkyl xylosides by the novel, very efficient and promising protocol of the Fischer synthesis from unprotected xylose and aliphatic alcohol. The use of 1-alkyl-3-methylimidazolium hydrogen sulfate ionic liquids as the catalysts with dual functionality (surfactant + acid catalyst) and micellar reaction system are the main novelty of described method. It has...
-
Catalytic impact of alloyed Al on the corrosion behavior of Co50Ni23Ga26Al1.0 magnetic shape memory alloy and catalysis applications for efficient electrochemical H2 generation
PublicationThe electrochemical and corrosion behaviour of Co50Ni23Ga27-xAlx (x = 0 and 1.0 wt%) magnetic shape memory alloys (MSMAs) was studied in 0.5 M NaCl solutions using various electrochemical techniques. Results showed remarkable activation of the tested MSMA toward pitting corrosion upon alloying it with Al. XPS examination confirmed the activation influence of alloyed Al. It proved that the presence of Al in the alloy's matrix weakens...
-
Charge separation control in organic photosensitizers for photocatalytic water splitting without sacrificial electron donors
PublicationPhotocatalytic hydrogen evolution reaction (photoHER) is one of the most promising approaches towards production of “green” hydrogen. Currently, the state-of-the-art photoHER systems require the use of sacrificial electron donors (SED), because of inefficient charge separation in photosensitizers and thermodynamically challenging water oxidation by the same catalyst. Here, we present a molecular design approach for all-organic...
-
A conceptual design and numerical analysis of the mixerless urea-SCR system
PublicationIn the present study, an innovative design of the urea-selective catalytic reduction (SCR) system without conventional mixing elements was developed. The aim was to obtain a high degree of urea decomposition, and uniform ammonia distribution at the inlet to the catalyst, while minimising the liquid film deposition and keeping the compact design. The concept of the design was based on creating high turbulences and elongating...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
PublicationIn this study, polyurethanes (PU) were synthesized from oligomeric dihydroxy(etylene-butylene adipate), poly(ethylene glycol) (PEG), hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO) as chain extender and stannous octoate as catalyst. PEG due to its hydrophilic character influences physical and chemical properties of PU. For testing were used PU having the following weigh contents of PEG: 0%, 7%, and 14%. Porous scaffolds...
-
Programmed metalloporphyrins for self-assembly within light-harvesting stacks: 5,15-dicyano-10,20-bis(3,5-di-tert-butylphenyl)-porphyrinato zinc(II) and its push-pull 15-N,N-dialkylamino-5-cyano congeners obtained by a facile direct amination.
PublicationThe title dicyano compound was synthesized via cyanation and it self-assembles in nonpolar solvents giving red-shifted and broad absorption maxima just as the bacteriochlorophylls which are encountered in the light-harvesting organelles of early photosynthetic bacteria. In the crystal, stacks are formed through a hierarchic combination of π-stacking and a CNZn electrostatic interaction. Push−pull 15-N,N-dialkylamino-5-cyano congeners...
-
Exfoliated graphite with spinel oxide as an effective hybrid electrocatalyst for water splitting
PublicationThe aim of the conducted research was to develop hybrid nanostructures formed from MnCo2O4 and exfoliated graphite. Carbon added during the synthesis allowed for obtaining a well-distributed MnCo2O4 particle size with exposed active sites contributing to the increased electric conductivity. The influence of the weight ratios of carbon to a catalyst for hydrogen and oxygen evolution reactions was investigated. The new bifunctional...
-
Carbon Nanomaterials From Metal-Organic Frameworks: A New Material Horizon for CO2 Reduction
PublicationThe rise of CO2 in the atmosphere, which results in severe climate change and temperature increase, is known as the major reason for greenhouse effect. Reducing CO2 to value-added products is an attractive solution to this severe problem, along with addressing the energy crisis, to which the catalysts being employed are of vital importance. Due to their high porosity and tunable compositions, Metal-Organic Frameworks (MOFs) show...
-
Thermal degradation kinetics of poly(propylene succinate) prepared with the use of natural origin monomers
PublicationLinear biobased polyester polyols were prepared with the use of succinic acid and 1,3-pro- panediol (both with natural origin). Tetraisopropyl orthotitanate (TPT) was used as a catalyst. In order to determine the effect of various synthesis temperature conditions on the thermal degradation kinet- ics, nine sequences of temperature conditions were used during two-step polycondensation reaction. Thermogravimetric analysis was conducted...
-
Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation
PublicationThis paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment,...
-
Organic syntheses greenness assessment with multicriteria decision analysis
PublicationGreen chemistry requires a metrics system that is comprehensive by the criteria included and simple in the application at the same time. We propose the application of multicriteria decision analysis for com- parative greenness assessment of organic synthesis procedures. The assessment is based on 9 criteria (the reagent, reaction efficiency, atom economy, temperature, pressure, synthesis time, solvent, catalyst and reactant) for...
-
Influence of alkali metal cations on the photoactivity of crystalline and exfoliated amorphous WO3 – photointercalation phenomenon
PublicationIn order to investigate the effect of photointercalation on photoelectrochemical properties, two types of WO3-based photoanodes, bulk and exfoliated have been prepared and investigated. An aqueous exfoliation method is introduced for the simple fabrication of amorphous and hydrated WO3 nanomaterial using commercial bulk WO3 precursor. The comparison of obtained material with bulk WO3 was performed using Raman, UV–vis, and XPS as...
-
Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes
PublicationPolymer derived carbon-rich SiOC ceramics are prepared from polysiloxane precursors through a pyrolysis process at 1000 °C using pure argon and argon/hydrogen mixture as pyrolysis atmosphere. The precursor is synthesized from a linear (Si–H)-containing polysiloxane cross-linked with divinylbenzene using hydrosilylation reaction in the presence of a platinum catalyst. Pyrolysis in Ar/H2 mixtures, compared to the treatment under...
-
A New Approach to Chemical Recycling of Polyamide 6.6 and Synthesis of Polyurethanes with Recovered Intermediates
PublicationA new efficient method for the chemical decomposition of polyamide 6.6 by the glycolysis and amino-glycolysis processes was proposed. The glycolysis was conducted using the mass excess of ethylene glycol (EG) as a decomposing agent in the presence of a catalyst. Also, a mixture of EG and triethylenetetramine was used as another decomposing agent in the amino- glycolysis process. The described process of decomposition did not...
-
Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion
PublicationIn this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed...
-
Cathodic activation of synthesized highly defective monoclinic hydroxyl‐functionalized ZrO2 nanoparticles for efficient electrochemical production of hydrogen in alkaline media
PublicationThe high electrochemical stability of Zirconia (ZrO2) at high potentials strongly suggested it as an alternative to carbon supports, which experience reduced efficiency due to some corrosion problems particularly during prolonged electrocatalysis activity. However, the use of ZrO2 was limited by its low electrical conductivity and surface area. In this work, we developed a methodology for synthesizing monoclinic ZrO2 NPs with increased...
-
Characterization of Highly Filled Glass Fiber/Carbon Fiber Polyurethane Composites with the Addition of Bio-Polyol Obtained through Biomass Liquefaction
PublicationThis work aims to investigate the process of obtaining highly filled glass and carbon fiber composites. Composites were manufactured using previously obtained cellulose derived polyol, polymeric methylene diphenyl diisocyanate (pMDI). As a catalyst, dibutyltin dilaurate 95% and Dabco® 33-LV were used. It was found that the addition of carbon and glass fibers into the polymer matrix causes an increase in the mechanical properties...
-
Induced-fit binding of laccase to gold and carbon electrodes for the biological fuel cell applications
PublicationAnalogues of laccase natural substrates (syringic, veratric, ferulic, vanillic, isovanillic, 3,5-dimethoxybenzoic aldehydes) were employed to bind and orient laccase molecules in a way which facilitates adsorption of the catalyst molecules and their electrical connection with the conductive support. Laccase was bound efficiently to these substrates both on gold and carbon electrodes forming, respectively, 2D and 3D films sensitive...
-
CONTEMPORARY ART AND CIVIC ENGAGEMENT
PublicationThe paper aims to explore the potential role of contemporary art as a catalyst for social transformation and civic engagement. The research focuses on the visual arts and their power to change social attitudes in contemporary society. On the basis of theoretical, transdisciplinary approaches and analysis of artwork the paper investigates emerging forms of art and how they address pressing social issues and concerns that would otherwise...
-
Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology
PublicationThe possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers...
-
The influence of amorphous macrodiol, diisocyanate type and l-ascorbic acid modifier on chemical structure, morphology and degradation behavior of polyurethanes for tissue scaffolds fabrication
PublicationStudies described in this work were related to the bulk synthesis and characterization of polyurethanes (PURs) obtained with the use of cyclic 4,4′-methylene bis(cyclohexyl isocyanate) (HMDI) or linear 1,6-hexamethylene diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), 1,4-butandiol (BDO) chain extender and dibutyltin dilaurate (DBTDL) catalyst. Obtained PURs were modified with l-ascorbic...
-
Modification of TiO2 nanotubes by graphene–strontium and cobalt molybdate perovskite for efficient hydrogen evolution reaction in acidic medium
PublicationHerein, we demonstrate that modification of TiO2 nanotubes with graphene–strontium and cobalt molybdate perovskite can turn them into active electrocatalysts for hydrogen evolution reaction (HER). For this purpose, a simple method of hydrothermal synthesis of perovskites was developed directly on the TiO2 nanotubes substrate. Moreover, the obtained hybrids were also decorated with graphene oxide (GO) during one-step hydrothermal...
-
High performance LaNi1-xCoxO3-δ (x = 0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells
PublicationOxygen electrodes prepared by infiltration of yttria stabilized zirconia backbone with Ce0.8Gd0.2O1.95 barrier layer and LaNi1-xCoxO3-δ (x=0.4 to 0.7) catalyst for application in reversible solid oxide cells have been studied. The effect of temperature and Ni:Co ratio on their phase composition, microstructure and electrochemical properties are discussed. It was shown that oxygen electrodes infiltrated with LaNi0.5Co0.5O3-δ had...
-
Capping ligand initiated CuInS2 quantum dots decoration on, ZnIn2S4 microspheres surface under different alkalinity levels resulting in different hydrogen evolution performance
PublicationSurface distribution of quantum dots (QDs) at the semiconductor matrix caused by synthesis condition (e.g. pH of solution during coupling) could lead to different photocatalytic activity. Thus, achieving an optimal covering of semiconductor matrix by QDs has been challenging. Herein, the influence of the alkalinity level of aqueous decoration medium for the coupling of mercaptoundecanoic acid (MUA) capped CuInS2 quantum dots (CIS)...
-
Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound
PublicationPowdered stone waste (PSW) obtained from a stone cutting industrial unit was applied as support for the immobilization of nano-sized ZnO to be utilized as an effective catalyst for the catalytic conversion of acetaminophen (ACE) under ultrasonication. The incorporation of ZnO nanostructures into PSW structure enhanced the specific surface area and pore volume of the as-prepared nanocompound. The change in the value of zero point...
-
Tuning the work function of graphite nanoparticles via edge termination
PublicationGraphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer...
-
The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream
PublicationEvaluation of performance of a proton exchange membrane fuel cell, which is affected by carbon monoxide that pollutes the hydrogen stream, was presented. This influence was studied for carbon monoxide concentration of 125–325 ppb, which are close to values specified in ISO 14687:2019 standard. Performed studies provided crucial information for further development of fuel cell as an energy source for automotive application. Impedance...
-
High-temperature Co-electrolysis of CO2/H2O and direct methanation over Co-impregnated SOEC. Bimetallic synergy between Co and Ni
PublicationTo study the synergy between the transition metals for enhancing the electrochemical and chemical activity, a series of SOECs were modified with a small amount of Co ions, namely 1.8, 3.6, and 5.4 wt% in the reduced state. The addition of βCD into the precursor solution allowed for extremely fine dispersion of Co species across the Ni-YSZ cermet structure. The sample containing 3.6 wt% Co reached an outstanding over 2.5-times-higher...
-
Photocatalytic decolourization of Rhodamine-B dye by visible light active ZIF-8/BiFeO3 composite
PublicationIn this work, preparation of ZIF-8 supported BiFeO3 photocatalyst by ultrasound cavitation technique was reported. The synthesized materials were characterized using solid UV absorption spectroscopy, Raman Spectroscopy, and SEM. The catalytic function of synthesized photocatalyst under ultraviolet and visible light was examined for the decolourization of Rhodamine-B (Rh-B) dye. To understand the action of the photocatalyst on Rh-B...
-
Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
PublicationThe present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefed in crude glycerol and 1,4-butanediol at diferent temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identifcation of the obtained polyols were...
-
Analysis of "green methanol" production from carbon dioxide acquired from negative emission power plants using CFD approach for catalytic reactor
PublicationThe growing global demand for energy, coupled with the urgent need to reduce carbon dioxide (CO₂) emissions, has led to the development of innovative energy cycles such as the negative CO₂ gas power plant (nCO2PP). Carbon dioxide storage and reuse in current industries is therefore becoming an important issue. The answer to this is the process of synthesizing methanol, commonly used in many industries from captured carbon dioxide...
-
Physics augmented classification of fNIRS signals
PublicationBackground. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the...
-
Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode
PublicationCarbon materials are commonly used catalyst supports in various types of fuel cells. Due to the possibility of designing their properties, they seem to be attractive and functional additives. In Direct Borohydride Fuel Cells (DBFCs), the electrooxidation reaction of borohydride competes with the undesirable hydrolysis reaction, therefore our work aimed to modify anodes based on a multi-component hydrogen storage alloy with a small...
-
Ag modified ZnO microsphere synthesis for efficient sonophotocatalytic degradation of organic pollutants and CO2 conversion
PublicationThe synthesis and design of non-precious and efficient sonophotocatalyts by an environment friendly technique are requisites for solar energy conversion and environmental remediation. This work reports the preparation of Ag/ZnO microspheres with different Ag contents through deposition–precipitation method for pollutant degradation and CO2 conversion. Detail structural investigation reveals that ZnO microspheres and Ag-ZnO microspheres...
-
Evaluation of the glycerolysis process and valorisation of recovered polyol in polyurethane synthesis
PublicationIn this study, the glycerolysis of polyurethane (PU) foam and the applicability of obtained glycerolysate (GLY) for cast PUs were investigated. It was found that crude glycerine with purity grade of 84% might be successfully used for the glycerolysis. The optimal conditions were determined as follows: reaction time of 60 min at 220 °C using dibutyltin dilaurate catalyst (0.5%). Moreover, the purification of GLY by means of liquid-liquid...
-
Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis
PublicationThe need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the...
-
Structural and Transportation Properties of Strontium Titanate Composites with Ion Conductive Oxides
PublicationThis paper has been written based on the author’s doctoral dissertation “Structural and transportation properties of strontium and titanate composites with ion conductive oxides”, prepared under the supervision of Prof. Dr. Hab. Eng. Bogusław Kusz at the Department of Solid State Physics of Gdańsk University of Technology. It reports the idea of the thesis and conclusions from the study. Niobium doped strontium titanate (Sr(Ti,Nb)O3)...
-
TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: Effects of photocatalyst properties, operational parameters and light source
PublicationSelf-organized TiO2 nanotubes as immobilized photocatalysts were evaluated in detail for the photocatalytic degradation of parabens mixtures from ultrapure water. This kind of approach can be a very suitable option for emerging contaminants degradation considering the possibility of the catalyst reuse and recovery which will be simpler than when catalytic powders are used. The anodization method was applied for the TiO2 nanotubes...
-
Diphosphinoboranes as Intramolecular Frustrated Lewis Pairs: P–B–P Bond Systems for the Activation of Dihydrogen, Carbon Dioxide, and Phenyl Isocyanate
PublicationHerein, we present the first example of the activation of small molecules by P-B-P bond systems. The reactivity study involves reactions of two selected diphosphinoboranes, (tBu2P)2BPh (1’) and (Cy2P)2BNiPr2 (2), that differ in terms of their structural and electronic properties for the activation of dihydrogen, carbon dioxide, and phenyl isocyanate. Diphosphinoborane 1’ activates H2 under very mild conditions in the absence of...
-
Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites
PublicationSingle semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting...
-
Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes
PublicationThe paper focuses on the optimization procedure concerning the synthesis method resulting in highly ordered titania nanotubes doped with iodine atoms. The doping process was based on the electrochemical treatment of a titania nanotube layer immersed in a potassium iodide (KI) solution acting as an iodine precursor. A number of endeavors were undertaken in order to optimize the doping conditions. Electrolyte concentration, reaction...
-
The catalytic activity of metal–organic frameworks (MOFs) and post-synthetic modified MOF towards depolymerisation of polycarbonate
PublicationChemical recycling of polycarbonate (PC) recovers valuable chemicals like monomers but often requires catalysts for mild reaction conditions and high conversion rates. This study explores the use of metal–organic frameworks (MOFs) as catalysts for PC methanolysis. We investigated the catalytic activity of amine-containing MOFs, specifically ZIF-8, MAF-6, and UiO-66-NH2, which have basic active sites favouring PC depolymerisation....
-
Closing the loop: Upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals
PublicationIn this study, we demonstrated the application of electrochemical oxidation as a safer and cleaner technology for minimizing the impact of pharmaceuticals in wastewaters, simultaneously mediated by upcycled secondary waste materials (SWMs)-derived electrodes, to further reduce their environmental impact. The modularity, scalability, ease of operation and reliability make electrochemical oxidation an ideal process for the destruction...
-
Nanoparticles preparation using microemulsion systems
PublicationMetallic nanoparticles become of current interests because they exhibit unique properties compared with those of metal atoms or bulk metal due to the quantum size effect and their large surface area, which make them attractive for applications in optics, electronics, catalysis biology and medicine. TiO2 has been used for environmental remediation purposes such as in the purification of water and air and also solar-to chemical energy...
-
The effect of Fe on chemical stability and oxygen evolution performance of high surface area SrTix-1FexO3-δ mixed ionic-electronic conductors in alkaline media
PublicationDevelopment of environmentally friendly, high performing oxygen evolution reaction (OER) catalysts is an important research challenge. In this work, iron doped strontium titanates with a general formula SrTi1-xFexO3-δ (x = 0.35, 0.50, 0.70, 0.90, and 1.00) denoted as STFx, were synthesized via a solid state reaction technique and characterized in terms of oxygen evolution reaction electrocatalysis in an alkaline electrolyte (0.1...
-
Degradation of tetracycline antibiotic utilizing light driven-activated oxone in the presence of g-C3N4/ZnFe LDH binary heterojunction nanocomposite
PublicationIn the present study, a binary heterojunction nanocomposite composed of graphitic carbon nitride (g-C3N4) and Zn/Fe-contained layered double hydroxide (ZnFe LDH) was employed as heterogeneous catalyst for the decomposition of tetracycline (TC) antibiotic utilizing Oxone and UV light irradiation. The sole use of g-C3N4/ZnFe LDH as adsorbent led to the negligible elimination of TC. In addition, the sole use of Oxone or UV (photolysis)...
-
Rapid development of the photoresponse and oxygen evolution of TiO2 nanotubes sputtered with Cr thin films realized via laser annealing
PublicationRecently, earth abundant transition metal oxides have gained particular attention as potential catalyst candidates due to their availability and low-cost comparing to substrates containing precious Pt or Au species. Herein, we present characterization of morphology, structure and electrochemical properties of pulsed 532 nm laser treated TiO2 nanotubes (NT) sputtered by the thin film of chromium. Scanning electron microscopy enables...
-
Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach
PublicationCurrently, the increasing importance of the bio-based chemical compounds development is visible in the polymer chemistry, chemical engineering and materials science. It is well-known that the various purity level and different contaminants characterize petrochemical-based compounds compared to their biobased counterparts. Therefore, it is necessary to find out the contaminants impact on the bio-based monomers synthesis. One of...
-
Effective sonophotocatalytic degradation of tetracycline in water: Optimization, kinetic modeling, and degradation pathways
PublicationHybrid advanced oxidation processes (AOPs) are gaining interest in degradation of variety of recalcitrant compounds for water and wastewater treatment, due to possible synergistic effects. The present study systematically evaluated the degradation of tetracycline (TC) with a sonophotocatalytic process combining acoustic cavitation (sonocavitation) and photocatalysis based on N-doped TiO2 catalyst. The TC degradation rate constant...
-
The Changing Nature of In‐Between Spaces in the Transformation Process of Cities
PublicationIn the in‐between spaces of cities, there are many problems of various nature and scale: functional, spatial, economic, environmental, visual, and social. There are also some hidden potentials that can be activated. The aim of the article is to explore the possibilities of solving existing problems and to show the possibilities of using the potentials of in‐between spaces with regard to the changing nature of a city. The article,...