Search results for: aircraft operation, classification, neural networks
-
Matching Exception Class Hierarchies between .NET, Java Environments
PublicationThe paper presents a methodology of exception classification and matching exception messages between .NET andJava environments. The methodology operates on existing exception class hierarchies and proposes two complementingapproaches: automated and manual matching. The automated matching uses the similarity measure to find associationsbetween exception messages from the two sets of classes for the considered programming languages....
-
Collective citizens' behavior modelling with support of the Internet of Things and Big Data
PublicationIn this paper, collective human behaviors are modelled by a development of Big Data mining related to the Internet of Things. Some studies under MapReduce architectures have been carried out to improve an efficiency of Big Data mining. Intelligent agents in data mining have been analyzed for smart city systems, as well as data mining has been described by genetic programming. Furthermore, artificial neural networks have been discussed...
-
Special techniques and future perspectives: Simultaneous macro- and micro-electrode recordings
PublicationThere are many approaches to studying the inner workings of the brain and its highly interconnected circuits. One can look at the global activity in different brain structures using non-invasive technologies like positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), which measure physiological changes, e.g. in the glucose uptake or blood flow. These can be very effectively used to localize active patches...
-
Knowledge-based functional safety and security management in hazardous industrial plants with emphasis on human factors
PublicationExisting and emerging new hazards have significant potential to impact destructively operation of technical systems, hazardous plants, and systems / networks of critical infrastructure. The programmable control and protection systems play nowadays an important role in reducing and controlling risk in the process of hazardous plant operation. It is outlined how to deal with security related hazards concerning such systems to be...
-
Risk Diagnosis and Management with BBN for Civil Engineering Projects during Construction and Operation
PublicationThe authors demonstrate how expert knowledge about the construction and operation phases combined with monitoring data can be utilized for the diagnosis and management of risks typical to large civil engineering projects. The methodology chosen for estimating the probabilities of risk elements is known as Bayesian Belief Networks (BBN). Using a BBN model one can keep on updating the risk event probabilities as the new evidence...
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublicationExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
The voltage on bus bars of the main switchboard of the ferry electrical power system during a sea voyage
Open Research DataThe dataset is part of the research results on the quality of supply voltage on bus bars of the main switchboard of the ship's electrical power system in different states of ship exploitation. The attached dataset contains the measurement results carried out onboard the ferry during a sea voyage.
-
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublicationThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
Shape Optimisation of Kaplan Turbine Blades Using Genetic Algorithms
PublicationThis monograph is a comprehensive guide to a method of blade profile optimisation for Kaplan-type turbines. This method is based on modelling the interaction between rotor and stator blades. Additionally, the shape of the draft tube is investigated. The influence of the periodic boundary condition vs. full geometry is also discussed. Evolutionary algorithms (EA) are used as an optimisation method together with artificial neural...
-
ANN for human pose estimation in low resolution depth images
PublicationThe paper presents an approach to localize human body joints in 3D coordinates based on a single low resolution depth image. First a framework to generate a database of 80k realistic depth images from a 3D body model is described. Then data preprocessing and normalization procedure, and DNN and MLP artificial neural networks architectures and training are presented. The robustness against camera distance and image noise is analysed....
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublicationThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
Inteligentne systemy agentowe w systemach zdalnego nauczania
PublicationW pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...
-
Analiza warunków pracy silnika spalinowego lokomotywy na biegu jałowym
PublicationW trakcie eksploatacji lokomotyw z silnikami spalinowymi obserwowany jest znaczny udział pracy silnika spalinowego w stanie biegu jałowego. Dlatego też średnia wartość strumienia paliwa zużywanego przez silnik spalinowy lokomotywy w tym stanie będzie miała istotny wpływ na efektywność energetyczną układu napędowego. Wyznaczaniu wartości tego parametru musi towarzyszyć jednoznaczna klasyfikacja warunków pracy układu napędowego lokomotywy....
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Assessment and Optimization of Air Monitoring Network for Smart Cities with Multicriteria Decision Analysis
PublicationEnvironmental monitoring networks need to be designed in efficient way, to minimize costs and maximize the information granted by their operation. Gathering data from monitoring stations is also the essence of Smart Cities. Agency of Regional Air Quality Monitoring in the Gdańsk Metropolitan Area (pol. ARMAAG) was assessed in terms of its efficiency to obtain variety of information. The results on one-month average concentrations...
-
Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System
PublicationThe main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...
-
Music Mood Visualization Using Self-Organizing Maps
PublicationDue to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublicationThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Deep learning in the fog
PublicationIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublicationIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
Open extensive IoT research and measurement infrastructure for remote collection and automatic analysis of environmental data.
PublicationInternet of Things devices that send small amounts of data do not need high bit rates as it is the range that is more crucial for them. The use of popular, unlicensed 2.4 GHz and 5 GHz bands is fairly legally enforced (transmission power above power limits cannot be increased). In addition, waves of this length are very diffiult to propagate under field conditions (e.g. in urban areas). The market response to these needs are the...
-
Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process
PublicationThe article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...
-
Residual MobileNets
PublicationAs modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublicationWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Fault detection in measuring systems of power plants
PublicationThis paper describes possibility of forming diagnostic relations based on application of the artifical neural networks (ANNs), intended for the identifying of degradation of measuring instruments used in developed power systems. As an example a steam turbine high-power plant was used. And, simulative calculations were applied to forming diagnostic neural relations. Both degradation of the measuring instruments and simultaneously...
-
Urban scene semantic segmentation using the U-Net model
PublicationVision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...
-
LDRAW based positional renders of LEGO bricks
Open Research Data243 different LEGO bricks renders of size 250x250 in 5 colors in 120 viewing angles stored as JPEG images. The renders are used to train neural networks for bricks recognition. All images were generated using L3P (http://www.hassings.dk/l3/l3p.html) and POV-Ray (http://www.povray.org/) tools and were based on the 3D models from LDraw (https://www.ldraw.org/)...
-
Categorization of emotions in dog behavior based on the deep neural network
PublicationThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
Analysis of Ferroresonance Mitigation Effectiveness in Auxiliary Power Systems of High-Voltage Substations
PublicationFerroresonance in power networks is a dangerous phenomenon, which may result in overcurrents and overvoltages, causing damage to power equipment and the faulty operation of protection systems. For this reason, the possibility of the occurrence of ferroresonance has to be identified, and adequate methods need to be incorporated to eliminate or reduce its effects. The aim of this paper is to evaluate the effectiveness of ferroresonance...
-
A Cross-Polarisation Discrimination Analysis of Off-Body Channels in Passenger Ferryboat Environments
PublicationThere is a need for investigating radio channels for Body Area Networks considering the depolarisation phenomenon and new types of environments, since these aspects are becoming very important for systems design and deployment. This paper presents an analysis of cross-polarisation discrimination for off-body channels based on a measurement campaign performed in a passenger ferryboat, i.e., where all walls, floors and ceilings are...
-
Next generation ITS implementation aspects in 5G wireless communication network
PublicationIn the paper the study of Intelligent Transportation systems implementation in the 5G wireless communication network is presented. Firstly, small-cell concept in Ultra Dense Heterogeneous network was analyzed. Secondly, the 5G network requirements were presented which are important from the point of view of transportation systems development. Next, the study on the 5G network architectures proposals dedicated to the ITS systems...
-
Akustyczna analiza natężenia ruchu drogowego dla systemów zarządzania ruchem
PublicationW pracy przybliżono wybrane zagadnienia z dziedziny zarządzania transportem drogowym w Polsce i na świecie. W tym kontekście pzredstawiono potrzeby rynkowe, wymagania jak i możliwości w zakresie pozyskiwania informacji o aktualnym stanie sieci drogowych. Zaproponowano akustyczną metodę nadzorowania ruchu drogowego i jej możliwości w kontekście systemów zarządzania ruchem. Przedstawiono schemat akwizycji sygnału wraz z danymi odniesienia....
-
Badanie stanu nawierzchni drogowej z wykorzystaniem uczenia maszynowego
PublicationW artykule opisano budowę systemu informowania o stanie nawierzchni drogowej z wykorzystaniem metod cyfrowego przetwarzania obrazów oraz uczenia maszynowego. Efektem wykonanych prac badawczych jest eksperymentalna platforma, pozwalająca na rejestrację uszkodzeń na drogach, system do analizy, przetwarzania i klasyfikacji danych oraz webowa aplikacja użytkownika do przeglądu stanu nawierzchni w wybranej lokalizacji.
-
Wirtualne sieci 5G, NGN i następne. Radioinformatyczna metamorfoza sieci komórkowych
PublicationPrzedstawiono problematykę ewolucyjnej, a w zasadzie rewolucyjnej, metamorfozy komórkowych systemów radiokomunikacyjnych w kontekście architektury sieci 5G, zasad jej działania oraz nowych możliwości implementacyjnych usług sieci NGN. Artykuł dotyczy w szczególności istoty działania sieci 5G, łączącej w sobie cechy sieci radiokomunikacyjnych poprzednich generacji, zwłaszcza 4G, oraz nowe właściwości charakterystyczne dla 5G. Dotyczą...
-
Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
PublicationMost of industrial processes are nonlinear, not stationary, and dynamical with at least few different time scales in their internal dynamics and hardly measured states. A biological wastewater treatment plant falls into this category. The paper considers modelling such processes for monitorning and control purposes by using State - Space Wavelet Neural Networks (SSWN). The modelling method is illustrated based on bioreactors of...
-
Mobility Managment Scenarios for IPv6 Networks-Proxy Mobile IP-v6Implementation Issues
PublicationManagement of user at the network layer plays an important role in efficient network operation. In the paper, authors' implementation of one of network-based mobility management models, namely Proxy Mobile IPv6, is presented and tested in a number of networking topologies and communication scenarios. The proposed implementation covers PMPIv6 functionality with optional security extensions (use of Diameter protocol) and handover...
-
Rotor Blade Geometry Optimisation in Kaplan Turbine
PublicationThe paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...
-
Obtaining a Well-Trained Artificial Intelligence Algorithm from Cross-Validation in Endoscopy
PublicationThe article shortly discusses endoscopic video analysis problems and artificial intelligence algorithms supporting it. The most common method of efficiency testing of these algorithms is to perform intensive cross-validation. This allows for accurately evaluate their performance of generalization. One of the main problems of this procedure is that there is no simple and universal way of obtaining a specific instance of a well-trained...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublicationThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublicationLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublicationTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Hydrogen fuel cell power supply for hybrid elelectric multiple unit train
PublicationIn European countries, electrified routes amount for 40% to 65% of the total railway networks length. Some of those routes are only partially electrified, and construction of a catenary network might not be viable on all routes. Consequently, operators run diesel trains under catenary or require both an electric and diesel vehicle, increasing costs of operation. Dual-mode vehicles exist, but they are mostly equipped with diesel...
-
Acoustic Processor of the Mine Countermeasure Sonar
PublicationThis paper presents the concept of an acoustic processor of the mine countermeasure sonar. Developed at the Department of Marine Electronics Systems, Gdansk University of Technology, the acoustic processor is an element of the MG-89, an underwater acoustic station. The focus of the article is on the modules of the processor. They are responsible for sampling analogue signals and implementing the algorithms controlling the measurement...
-
Improving the Survivability of Carrier Networks to Large-Scale Disasters
PublicationThis chapter is dedicated to the description of methods aiming to improve the survivability of carrier networks to large-scale disasters. First, a disaster classification and associated risk analysis is described, and the disaster-aware submarine fibre-optic cable deployment is addressed aiming to minimize the expected costs in case of natural disasters. Then, the chapter addresses the improvement of the network connectivity resilience...
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublicationIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Optimizing FSO networks resilient to adverse weather conditions by means of enhanced uncertainty sets
PublicationThis work deals with dimensioning of wireless mesh networks (WMN) composed of FSO (free space optics) links. Although FSO links realize broadband transmission at low cost, their drawback is sensitivity to adverse weather conditions causing transmission degradation on multiple links. Hence, designing such FSO networks requires an optimization model to find the cheapest configuration of link capacities that will be able to carry...
-
Enhancing Resilience of FSO Networks to Adverse Weather Conditions
PublicationOptical wireless networks realized by means of gigabit optical wireless communication (OWC) systems are becoming, in a variety of applications, an important alternative, or a complementary solution, to their fiber-based counterparts. However, performance of the OWC systems can be considerably degraded in periods of unfavorable weather conditions, such as heavy fog, which temporarily reduce the effective capacity of the network....