Filters
total: 1970
filtered: 1534
-
Catalog
- Publications 1534 available results
- Journals 70 available results
- Conferences 110 available results
- People 133 available results
- Projects 1 available results
- Research Teams 1 available results
- e-Learning Courses 80 available results
- Events 19 available results
- Open Research Data 22 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: sztuczna inteligencja
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Asking Data in a Controlled Way with Ask Data Anything NQL
PublicationWhile to collect data, it is necessary to store it, to understand its structure it is necessary to do data-mining. Business Intelligence (BI) enables us to make intelligent, data-driven decisions by the mean of a set of tools that allows the creation of a potentially unlimited number of machine-generated, data-driven reports, which are calculated by a machine as a response to queries specified by humans. Natural Query Languages...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublicationThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Toward Robust Pedestrian Detection With Data Augmentation
PublicationIn this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...
-
Equal Baseline Camera Array—Calibration, Testbed and Applications
PublicationThis paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...
-
Automated Parking Management for Urban Efficiency: A Comprehensive Approach
PublicationEffective parking management is essential for ad-dressing the challenges of traffic congestion, city logistics, and air pollution in densely populated urban areas. This paper presents an algorithm designed to optimize parking management within city environments. The proposed system leverages deep learning models to accurately detect and classify street elements and events. Various algorithms, including automatic segmentation of...
-
Mask Detection and Classification in Thermal Face Images
PublicationFace masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...
-
Mining inconsistent emotion recognition results with the multidimensional model
PublicationThe paper deals with the challenge of inconsistency in multichannel emotion recognition. The focus of the paper is to explore factors that might influence the inconsistency. The paper reports an experiment that used multi-camera facial expression analysis with multiple recognition systems. The data were analyzed using a multidimensional approach and data mining techniques. The study allowed us to explore camera location, occlusions...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Sound engineering as our commitment to its creators in Poland
PublicationSound engineering is an interdisciplinary and rapidly expanding domain. It covers many aspects, such as sound perception, studio and sound mastering technology, music information retrieval including content-based search systems and automatic music transcription frameworks, sound synthesis, sound restoration, electroacoustics, and other ones constituting multimedia technology. Moreover, machine learning methods applied to the topics...
-
3D seafloor reconstruction using data from side scan and synthetic aperture sonar
PublicationSide scan and synthetic aperture sonars are widely used imaging systems in the underwater environment. They are relatively cheap and easy to deploy, in comparison with more powerful sensors, like multibeam echosounders. Although side scan and synthetic aperture sonars does not provide seafloor bathymetry directly, their records are finally related to seafloor images. Moreover, the analysis of such images performed by human eye...
-
Multiple Cues-Based Robust Visual Object Tracking Method
PublicationVisual object tracking is still considered a challenging task in computer vision research society. The object of interest undergoes significant appearance changes because of illumination variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter- (KCF) based tracking schemes have shown good performance in recent years. The accuracy and robustness of these trackers can be further enhanced...
-
Analyzing and Visualizing Government-Citizen Interactions on Twitter to Support Public Policy-making
PublicationTwitter is widely adopted by governments to communicate with citizens. It has become a major source of data for analyzing how governments communicate with citizens and how citizens respond to such communication, uncovering important insights about government-citizen interactions that could be used to support public policy-making. This article presents research that aims at developing a software tool called Twitter Analytics for...
-
The potential interaction of environmental pollutants and circadian rhythm regulations that may cause leukemia
PublicationTumor suppressor genes are highly affected during the development of leukemia, including circadian clock genes. Circadian rhythms constitute an evolutionary molecular machinery involving many genes, such as BMAL1, CLOCK, CRY1, CRY2, PER1, PER2, REV-ERBa, and RORA, for tracking time and optimizing daily life during day-night cycles and seasonal changes. For circulating blood cells many of these genes coordinate their proliferation,...
-
The study on the appearance of deformation defects in the yacht lamination process using an AI algorithm and expert knowledge
PublicationThis article describes the application of the A-priori algorithm for defining the rule-based relationships between individual defects caused during the lamination process, affecting the deformation defect of the yacht shell. The data from 542 yachts were collected and evaluated. For the proper development of the algorithm, a technological process of the yacht lamination supported by expert decisions was described. The laminating...
-
Application of unmanned USV surface and AUV underwater maritime platforms for the monitoring of offshore structures at sea
PublicationThe operation of offshore structures at sea requires the implementation of advanced systems for their permanent monitoring. There is a set of novel technologies that could be implemented to deliver a higher level of effective and safe operation of these systems. A possible novel solution may be the application of a new maritime unmanned (USV) surface and underwater vehicles/platforms (AUV). Application of such vehicles/platforms...
-
ChatGPT Application vis-a-vis Open Government Data (OGD): Capabilities, Public Values, Issues and a Research Agenda
PublicationAs a novel Artificial Intelligence (AI) application, ChatGPT holds pertinence not only for the academic, medicine, law, computing or other sectors, but also for the public sector-case in point being the Open Government Data (OGD) initiative. However, though there has been some limited (as this topic is quite new) research concerning the capabilities ChatGPT in these sectors, there has been no research about the capabilities it...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Fully Automated AI-powered Contactless Cough Detection based on Pixel Value Dynamics Occurring within Facial Regions
PublicationIncreased interest in non-contact evaluation of the health state has led to higher expectations for delivering automated and reliable solutions that can be conveniently used during daily activities. Although some solutions for cough detection exist, they suffer from a series of limitations. Some of them rely on gesture or body pose recognition, which might not be possible in cases of occlusions, closer camera distances or impediments...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublicationNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublicationMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Advanced seismic control strategies for smart base isolation buildings utilizing active tendon and MR dampers
PublicationThis paper investigates the seismic behaviour of a five-storey shear building that incorporates a base isolation system. Initially, the study considers passive base isolation and employs a multi-objective archived-based whale optimization algorithm called MAWOA to optimize the parameters of base isolation. Subsequently, a novel model is proposed, which incorporates an interval type-2 Takagi-Sugeno fuzzy logic controller (IT2TSFLC)...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
High-quality academic teachers in business school. The case of The University of Gdańsk, Poland
PublicationThe Bologna process, the increasing number of higher education institutions, the mass education and the demographic problems make the quality of education and quality of the academic teachers a subject of wide public debate and concern. The aim of the paper is to identify the most preferred characteristics of a teacher working at a business school. The research problem was: What should a high-quality business school academic teacher...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublicationDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
Cytokine TGFβ Gene Polymorphism in Asthma: TGF-Related SNP Analysis Enhances the Prediction of Disease Diagnosis (A Case-Control Study With Multivariable Data-Mining Model Development)
Publication -
Agile Commerce in the light of Text Mining
PublicationThe survey conducted for this study reveals that more than 84% of respondents have never encountered the term “agile commerce” and do not understand its meaning. At the same time, they are active participants of this strategy. Using digital channels as customers more often than ever before, they have already been included in the agile philosophy. Based on the above, the purpose of the study is to analyse major text sets containing...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublicationThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Engineering education for smart grid systems in the quasi-industrial environment of the LINTE^2 laboratory
PublicationSmart grid systems are revolutionising the electric power sector, integrating advanced technologies to enhance efficiency, reliability and sustainability. It is important for higher education to equip the prospective smart grid professional with the competencies enabling them to navigate through the related complexities and drive innovation. To achieve this, interdisciplinary education programmes are necessary, addressing inter...
-
Monitoring wizyjny w systemach zabezpieczenia transportu wodnego. Koncepcja implementacyjna
PublicationW artykule autorzy przedstawiają koncepcję zastosowania własnych badań nad pomiarem prędkości przepływu cieczy do zastosowań praktycznych w pomiarach przepływu wody w kanałach otwartych i rzekach. Jako narzędzie pomiarowe wykorzystują zestaw aparatów synchronicznych, które rejestrują indykatory przepływu znajdujące się na powierzchni analizowanej cieczy. Aparat matematyczny przedstawiony w rozwiązaniu sprowadza się do stosowania...
-
A Robust Random Forest Model for Classifying the Severity of Partial Discharges in Dielectrics
PublicationPartial Discharges (PDs) are a common source of degradation in electrical assets. It is essential that the extent of the deterioration level of insulating medium is correctly identified, to optimize maintenance schedules and prevent abrupt power outages. Temporal PD signals received from damaged insulation, collected through the IEC-60270 method is the gold standard for PD detection. Temporal signals may be transformed to the frequency...
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublicationThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublicationPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublicationAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience
PublicationSignificant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...
-
Long Distance Vital Signs Monitoring with Person Identification for Smart Home Solutions
PublicationAbstract— Imaging photoplethysmography has already been proved to be successful in short distance (below 1m). However, most of the real-life use cases of measuring vital signs require the system to work at longer distances, to be both more reliable and convenient for the user. The possible scenarios that system designers must have in mind include monitoring of the vital signs of residents in nursing homes, disabled people, who...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Application of chemometric techniques in studies of toxicity of selected commercially available products for infants and children
PublicationThe goal of the present study is to assess the impact of the experimental conditions for extraction procedures (time of extraction, thermal treatment and type of extraction media) as applied to several baby and infant products checked for their possible ecotoxicological response when tested by various ecotoxicity tests(Microtox®, Ostracodtoxkit F™and Xenoscreen YES/YAS™). The systems under consideration are multidimensional by...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Path-based methods on categorical structures for conceptual representation of wikipedia articles
PublicationMachine learning algorithms applied to text categorization mostly employ the Bag of Words (BoW) representation to describe the content of the documents. This method has been successfully used in many applications, but it is known to have several limitations. One way of improving text representation is usage of Wikipedia as the lexical knowledge base – an approach that has already shown promising results in many research studies....
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublicationIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Data on LEGO sets release dates and worldwide retail prices combined with aftermarket transaction prices in Poland between June 2018 and June 2023
PublicationThe dataset contains LEGO bricks sets item count and pricing history for AI-based set pricing prediction. The data spans the timeframe from June 2018 to June 2023. The data was obtained from three sources: Brickset.com (LEGO sets retail prices, release dates, and IDs), Lego.com official web page (ID number of each set that was released by Lego, its retail prices, the current status of the set) and promoklocki.pl web page (the retail...
-
Sounding Mechanism of a Flue Organ Pipe—A Multi-Sensor Measurement Approach
PublicationThis work presents an approach that integrates the results of measuring, analyzing, and modeling air flow phenomena driven by pressurized air in a flue organ pipe. The investigation concerns a Bourdon organ pipe. Measurements are performed in an anechoic chamber using the Cartesian robot equipped with a 3D acoustic vector sensor (AVS) that acquires both acoustic pressure and air particle velocity. Also, a high-speed camera is employed...
-
Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?
PublicationThe estimation of electric power utilization, its baseload, and its heating, light, ventilation, and air-conditioning (HVAC) power component, which represents a very large portion of electricity usage in commercial facilities, are important for energy consumption controls and planning. Non-intrusive load monitoring (NILM) is the analytical method used to monitor the energy and disaggregate total electrical usage into appliance-related...
-
Development of cluster analysis methodology for identification of model rainfall hyetographs and its application at an urban precipitation field scale
PublicationDespite growing access to precipitation time series records at a high temporal scale, in hydrology, and particularly urban hydrology, engineers still design and model drainage systems using scenarios of rainfall temporal distributions predefined by means of model hyetographs. This creates the need for the availability of credible statistical methods for the development and verification of already locally applied model hyetographs....