Search results for: POWER NETWORKS
-
The influence of azide and imidazole on the properties of Mn- and Cd-based networks: conductivity and nonlinear phenomena
PublicationWe report a study on a family of four new Mn- and Cd-azide-imidazolate-based compounds with various crystal architectures. Notably, three of these compounds display noncentrosymmetric crystal arrangements at room temperature, a rare phenomenon in hybrid organic–inorganic materials. Both nonlinear optical (NLO) and electrical phenomena in these compounds are observed. The NLO processes include second and third harmonic generation,...
-
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublicationThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublicationRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Comparison of 3D Point Cloud Completion Networks for High Altitude Lidar Scans of Buildings
PublicationHigh altitude lidar scans allow for rapid acquisition of big spatial data representing entire city blocks. Unfortunately, the raw point clouds acquired by this method are largely incomplete due to object occlusions and restrictions in scanning angles and sensor resolution, which can negatively affect the obtained results. In recent years, many new solutions for 3D point cloud completion have been created and tested on various objects;...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublicationThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Krzysztof Nyka dr hab. inż.
PeopleKrzysztof Nyka, received MSc (1986) PhD (2002) and DSc (2020) degrees in telecommunication and electrical engineering from the Faculty of Electronics, Telecommunications and Informatics (ETI) of Gdańsk University of Technology (GUT), Poland. He is currently an Associate Professor at the Department of Microwaves and Antenna Engineering, Faculty of ETI, GUT. Before his academic career, he worked for the electronic industry (1984-1986). Research...
-
An Analysis of the Performance of Lightweight CNNs in the Context of Object Detection on Mobile Phones
PublicationConvolutional Neural Networks (CNNs) are widely used in computer vision, which is now increasingly used in mobile phones. The problem is that smartphones do not have much processing power. Initially, CNNs focused solely on increasing accuracy. High-end computing devices are most often used in this type of research. The most popular application of lightweight CNN object detection is real-time image processing, which can be found...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublicationToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Applicability of null-steering for spoofing mitigation in civilian GPS
PublicationCivilian GPS signals are currently used in many critical applications, such as precise timing for power grids and telecommunication networks. Spoofing may cause their improper functioning. It is a threat which emerges with the growing availability of GPS constellation simulators and other devices which may be used to perform such attack. Development of the effective countermeasures, covering detection and mitigation, is necessary...
-
A novel genetic approach to provide differentiated levels of service resilience in IP-MPLS/WDM networks
PublicationThis paper introduces a novel class-based method of survivable routing for connection-oriented IP-MPLS/WDM networks, called MLS-GEN-H. The algorithm is designed to provide differentiated levels of service survivability in order to respond to varying requirements of end-users. It divides the complex problem of survivable routing in IP-MPLS/WDM networks into two subproblems, one for each network layer, which enables finding the...
-
Redefining brain tumor segmentation: a cutting-edge convolutional neural networks-transfer learning approach
Publication -
Efficient handover scheme for Mobile IPv4 over IEEE 802.11 networks with IEEE 802.21 triggers.
PublicationEfektywność przełączania jest bardzo istotnym parametrem, decydującym o pracy sieci bezprzewodowych, realizujacych usługi multimedialne na wysokim poziomie jakości. Użytkownicy takich sieci oczekują ciągłej obsługi podczas procesu przemieszczania się. Okazuje się, że istotnym źródlem opóźnień są nieefektywne procedury przełączania w warstwach drugiej i trzeciej, wynikający częściowo z postulatu o separacji funkcji realizowanych...
-
Quantum superadditivity in linear optics networks: Sending bits via multiple-access Gaussian channels
PublicationSuperadditivity effects of communication capacities are known in the case of discrete variable quantum channels. We describe the continuous variable analog of one of these effects in the framework of Gaussian multiple access channels (MACs). Classically, superadditivity-type effects are strongly restricted: For example, adding resources to one sender is never advantageous to other senders in sending their respective information...
-
SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks
Publication -
Deformation Analysis of Geodetic Networks by Applying M split Estimation with Conditions Binding the Competitive Parameters
Publication -
A novel class-based protection algorithm providing fast service recovery in IP/WDM networks
PublicationW artykule rozważa się warstwową strukturę sieci IP-MPLS/WDM. Węzły sieci mają funkcjonalność zarówno optycznych krotnic transferowych (OXC), jak i routerów IP. Dowolne dwa routery IP mogą być ze sobą połączone poprzez logiczne łącze IP realizowane przez ścieżkę optyczną WDM. Zaproponowano metodę klasową doboru tras przeżywalnych zapewniającą szybkie odtwarzanie uszkodzonych strumieni ruchu zarówno w warstwie WDM jak i IP-MPLS....
-
Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with moving measurment window
PublicationW artykule rozważana jest łączna estymacja przedziałowa zmiennych i parametrów w złożonej sieci dynamicznej w oparciu niepewne modele parametryczne i ograniczoną liczbę pomiarów. Opracowany został rekursywny algorytm estymacji z przesuwnym oknem pomiarowym, odpowiedni dla monitorowania sieci on-line. Okno pomiarowe pozwala na stabilizowanie klasycznego algorytmu rekurencyjnego estymacji i znacznie poprawienie obcisłości estymat....
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublicationThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublicationThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Formation of Protein Networks between Mucins: Molecular Dynamics Study Based on the Interaction Energy of the System
PublicationMolecular dynamics simulations have been performed for a model aqueous solution of mucin. As mucin is a central part of lubricin, a key component of synovial fluid, we investigate its ability to form cross-linked networks. Such network formation could be of major importance for the viscoelastic properties of the soft-matter system and crucial for understanding the lubrication mechanism in articular cartilage. Thus,the inter- and...
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublicationEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
Long-distance quantum communication over noisy networks without long-time quantum memory
PublicationThe problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008)] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission...
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublicationABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks
PublicationThis paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected...
-
Evidence-Based Risk Management for Civil Engineering Projects Using Bayesian Belief Networks (BBN)
PublicationThe authors are seeking new methods for improving the efficiency of the investments associated with the maintenance and operation of existing civil engineering structures. It is demonstrated how the knowledge about the elements of construction and operation phases and their relationships, combined with monitoring data can be used for more effective management of the risks associated with civil engineering projects. The methodology...
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublicationA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublicationThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Application of Bayesian Networks in risk diagnostics arising from the degree of urban regeneration area degradation
PublicationUrban regeneration as a complex project, generates many extremely specific threats affecting the increase of investment risk. Its unique nature causes that probability parameter, normally applied in the process of risk quantification, is extremely difficult to estimate. Due to lack of historical data urban regeneration related activities are therefore associated with uncertainty. According to the authors, a useful tool for resolving...
-
Nodal cooperation equilibrium analysis in multi-hop wireless ad hoc networks with a reputation system
PublicationMotivated by the concerns of cooperation security, this work examines selected principles of state-of-the-art reputation systems for multi-hop ad hoc networks and their impact upon optimal strategies for rational nodes. An analytic framework is proposed and used for identification of effective cooperation-enforcement schemes. It is pointed out that optimum rather than high reputation can be expected to be sought by rational nodes.
-
Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations
PublicationThe technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate...
-
Testbed analysis of video and VoIP transsmission performance in IEEE 802.11 b/g/n networks
PublicationThe aim of the work is to analyze capabilities and limitations of different implementations of IEEE 802.11 technologies (IEEE 802.11 b/g/n), utilized for both video streaming and VoIP calls directed to mobile devices. Our preliminary research showed that results obtained with currently popular simulation tools can be drastically different than these possible in real-world environment, so, in order to correctly evaluate performance...
-
The Impact of 8- and 4-Bit Quantization on the Accuracy and Silicon Area Footprint of Tiny Neural Networks
PublicationIn the field of embedded and edge devices, efforts have been made to make deep neural network models smaller due to the limited size of the available memory and the low computational efficiency. Typical model footprints are under 100 KB. However, for some applications, models of this size are too large. In low-voltage sensors, signals must be processed, classified or predicted with an order of magnitude smaller memory. Model downsizing...
-
Optimum Choice of Randomly Oriented Carbon Nanotube Networks for UV-Assisted Gas Sensing Applications
PublicationWe investigated the noise and photoresponse characteristics of various optical transparencies of nanotube networks to identify an optimal randomly oriented network of carbon nanotube (CNT)-based devices for UV-assisted gas sensing applications. Our investigation reveals that all of the studied devices demonstrate negative photoconductivity upon exposure to UV light. Our studies confirm the effect of UV irradiation on the electrical...
-
Optymalizacja treningu i wnioskowania sieci neuronowych
PublicationSieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...
-
Vision-based parking lot occupancy evaluation system using 2D separable discrete wavelet transform
PublicationA simple system for rough estimation of the occupancy of an ad-hoc organized parking lot is presented. A reasonably simple microprocessor hardware with a low resolution monochrome video camera observing the parking lot from the location high above the parking surface is capable of running the proposed 2-D separable discrete wavelet transform (DWT)-based algorithm, reporting the percentage of the observed parking area occupied by...
-
Dynamic Signal Strength Mapping and Analysis by Means of Mobile Geographic Information System
PublicationBluetooth beacons are becoming increasingly popular for various applications such as marketing or indoor navigation. However, designing a proper beacon installation requires knowledge of the possible sources of interference in the target environment. While theoretically beacon signal strength should decay linearly with log distance, on-site measurements usually reveal that noise from objects such as Wi-Fi networks operating in...
-
Disciplines and measures of information resilience
PublicationCommunication networks have become a fundamental part of many critical infrastructures, playing an important role in information delivery in various failure scenarios triggered e.g., by forces of nature (including earthquakes, tornados, fires, etc.), technology-related disasters (for instance due to power blackout), or malicious human activities. A number of recovery schemes have been defined in the context of network resilience...
-
Modulo N Backoff Scheme for effective QoS differentiation and increased bandwidth utilization in IEEE 802.11 networks
PublicationThe paper presents a new "modulo N" channel access scheme for wireless Local Area Networks (WLANs). The novel solution derives from the Distributed Coordination Function (DCF) of the IEEE 802.11 standard, further elaborated as Enhanced Distribution Channel Access (EDCA) by the 802.11e draft specification. The main innovation concerns improvement of the binary exponential backoff scheme used for collision avoidance in 802.11 networks....
-
Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks
Publication -
Social networks as a context for small business? A new look at an enterprise in the context of a smallness and newness liability syndrome
PublicationIn this paper we aim to propose and outline key ingredients to a small enterprise success, emerging from the social capital of small business owner-managers and their business networks. We employ resource based view of an organization as well as an embeddedness perspective along with new approach transaction costs to outline the pillars of an advantage of a small business entity. The analysis of survey data leads us to conclusion,...
-
Selfishness Detection in Mobile Ad Hoc Networks: How Dissemination of Indirect Information Turns into Strategic Issue
PublicationDla środowiska sieci mobilnej ad hoc przedyskutowano wymienność pomiędzy wydatkiem energetycznym węzła egoistycznego a obniżaniem jego metryki reputacyjnej. Badania symulacyjne wskazują, że atakom polegającym na selektywnym usuwaniu pakietów można przeciwdziałać poprzez datacentryczny system reputacyjny bazujący na potwierdzeniach końcowych, który nakazuje jednakowo uaktualniać metryki reputacyjne dla wszystkich węzłów na źle zachowującej...
-
Fast service restoration under shared protection at lightpath level in survivable WDM mesh grooming networks
PublicationW artykule zaproponowano nowe podejście do optymalizacji rozdziału zasobów w przeżywalnych sieciach optycznych z agregacją strumieni ruchu. Zaproponowana metoda bazuje na wierzchołkowym kolorowaniu grafu konfliktów. Jest pierwszym podejściem, dedykowanym sieciom optycznym z agregację strumieni ruchu z pełną zdolnością do konwersji długości fal, która nie powoduje wydłużenia ściezek zabezpieczjących, a więc zapewnia szybkie odtwarzanie...
-
Comparison of selected clustering algorithms of raw data obtained by interferometric methods using artificial neural networks
Publication -
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublicationQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublicationFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Fast Fading Influence on the Deep Learning-Based LOS and NLOS Identificationin Wireless Body Area Networks
PublicationIn the article, the fast fading influence on the proposed DL (Deep Learning) approach for LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight) conditions identification in Wireless Body Area Networks is investigated. The research was conducted on the basis of the off-body communication measurements using the developed mobile measurement stand, in an indoor environment for both static and dynamic scenarios. The measurements involved...
-
Fabrication of toughened plastic using styrene butadiene rubber-poly (methyl methacrylate) interpenetrating polymer networks
PublicationA standard set of interpenetrating polymeric networks (IPNs) has been contrived using an elastomerstyrene butadiene rubber and a thermoplastic poly (methyl methacrylate) through sequential polymerization protocol. This low-cost material can be hopefully engaged as a toughened plastic with cocontinuous morphology. Different morphological protocols including Raman imaging are effectively utilized to envisage the effect of blend ratio...
-
Multicast Traffic Throughput Maximization through Dynamic Modulation and Coding Scheme Assignment in Wireless Sensor Networks
Publication