displaying 1000 best results Help
Search results for: cross-sensitivity, multiple linear regression, artificial neural networks
-
Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose
PublicationThe paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along...
-
Collective citizens' behavior modelling with support of the Internet of Things and Big Data
PublicationIn this paper, collective human behaviors are modelled by a development of Big Data mining related to the Internet of Things. Some studies under MapReduce architectures have been carried out to improve an efficiency of Big Data mining. Intelligent agents in data mining have been analyzed for smart city systems, as well as data mining has been described by genetic programming. Furthermore, artificial neural networks have been discussed...
-
Inteligentne systemy agentowe w systemach zdalnego nauczania
PublicationW pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...
-
Hybrid System for Ship-Aided Design Automation
PublicationA hybrid support system for ship design based on the methodology of CBR with some artificial intelligence tools such as expert system Exsys Developer along with fuzzy logic, relational Access database and artificial neural network with backward propagation of errors.
-
Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based On the Exhaust Gas Composition Testing
PublicationThis paper presents possible use of results of exhaust gas composition testing of self - ignition engine for technical state assessment of its charge exchange system under assumption that there is strong correlation between considered structure parameters and output signals in the form of concentration of toxic compounds (ZT) as well as unambiguous character of their changes. Concentration of the analyzed ZT may be hence considered...
-
Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness
PublicationThis paper presents a novel complementary resonator featuring high sensitivity, low fabrication cost, and improved performance. The proposed structure consists of a complementary concentric square and circular ring resonator (CCSCRR) with multiple splits to enhance the inductance of the resonator. The proposed CCSCRR is coupled to a microstrip transmission line with an impedance of fifty ohms to create a high-sensitivity sensor....
-
IEEE International Workshop on Neural Networks for Signal Processing
Conferences -
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublicationThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
Comparison of selected electroencephalographic signal classification methods
PublicationA variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...
-
Shape Optimisation of Kaplan Turbine Blades Using Genetic Algorithms
PublicationThis monograph is a comprehensive guide to a method of blade profile optimisation for Kaplan-type turbines. This method is based on modelling the interaction between rotor and stator blades. Additionally, the shape of the draft tube is investigated. The influence of the periodic boundary condition vs. full geometry is also discussed. Evolutionary algorithms (EA) are used as an optimisation method together with artificial neural...
-
Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review
PublicationIn this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions...
-
Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm
PublicationA problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...
-
Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System
PublicationThe main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...
-
Music Mood Visualization Using Self-Organizing Maps
PublicationDue to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...
-
Models of using the Internet by young Poles and their social capital.
PublicationHighlights • Study examining Polish youth on internet usage styles. • Online communication is the most common form of spending time on the Internet. •...
-
Neural Network Subgraphs Correlation with Trained Model Accuracy
PublicationNeural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...
-
Sensitivity analysis of free torsional vibration frequencies of thin-walled laminated beams under axial load
PublicationThe paper addresses sensitivity analysis of free torsional vibration frequencies of thin-walled beams of bisymmetric open cross-section made of unidirectional fibre-reinforced laminate. The warping effect and the axial end load are taken into account. The consideration is based upon the classical theory of thin-walled beams of non-deformable cross-section. The first-order sensitivity variation of the frequencies is derived with...
-
Projektowanie układów ramowych z zastosowaniem analizy wrażliwości
PublicationW pracy przedstawiono przykład projektowania układów ramowych z zastosowaniem analizy wrażliwości. Rozważane układy ramowe rozwiązano autorskim programem napisanym w środowisku MATLAB, metodą elementów skończonych. Badano wpływ zmiany modułu Younga oraz wpływ zmiany wielkości przekroju poprzecznego na wybrane przemieszczenia ramy. Przedstawiono wyniki dla analizy wrażliwości jedno i wieloparametrycznej.
-
Pose classification in the gesture recognition using the linear optical sensor
PublicationGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublicationIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process
PublicationThe article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublicationA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
On the Usefulness of the Generalised Additive Model for Mean Path Loss Estimation in Body Area Networks
PublicationIn this article, the usefulness of the Generalised Additive Model for mean path loss estimation in Body Area Networks is investigated. The research concerns a narrow-band indoor off-body network operating at 2.45 GHz, being based on measurements performed with four different users. The mean path loss is modelled as a sum of four components that depend on path length, antenna orientation angle, absolute difference between transmitting...
-
BLOOD PRESSURE ESTIMATION BY MEANS OF A JOINT IMPEDANCE– PHOTOPLETYSMOGRAPHIC METHOD
PublicationThe knowledge of patient’s day to day blood pressure changes is invaluable to physicians for both diagnostics and health monitoring reasons. Constant observation of the pressure throughout a day would provide even more valuable clinical information. A convenient non-invasive methods of blood pressure estimation for monitoring purposes are widely proposed. This work shows a statistical approach to...
-
An Empirical System Loss Model for Body Area Networks in a Passenger Ferry Environment
PublicationThis paper presents a general empirical system loss model for estimating propagation loss in Body Area Networks in off-body communications at 2.45 GHz in a passenger ferry environment. The model is based on measurements, which were carried out in dynamic scenarios in the discotheque passenger ferry environment. The model consists of three components: mean system loss, attenuation resulting from the variable antenna position on...
-
An Empirical System Loss Model for Body Area Networks in a Passenger Ferry Environment
PublicationThis paper presents a general empirical system loss model for estimating propagation loss in Body Area Networks in off-body communications at 2.45 GHz in a passenger ferry environment. The model is based on measurements, which were carried out in dynamic scenarios in the discotheque passenger ferry environment. The model consists of three components: mean system loss, attenuation resulting from the variable antenna position on...
-
Method of selecting the LS-SVM algorithm parameters in gas detection process
PublicationIn this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which...
-
Rotor Blade Geometry Optimisation in Kaplan Turbine
PublicationThe paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...
-
Multimodal Approach For Polysensory Stimulation And Diagnosis Of Subjects With Severe Communication Disorders
Publicationis evaluated on 9 patients, data analysis methods are described, and experiments of correlating Glasgow Coma Scale with extracted features describing subjects performance in therapeutic exercises exploiting EEG and eyetracker are presented. Performance metrics are proposed, and k-means clusters used to define concepts for mental states related to EEG and eyetracking activity. Finally, it is shown that the strongest correlations...
-
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublicationTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublicationLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Liniowe i nieliniowe modele wielowymiarowej kalibracji do predykcji stężenia substancji z pomiarów woltamperometrycznych
PublicationPomiary woltamperometryczne znajdują zastosowanie w wielu dziedzinach nauki i techniki, np. w przemyśle farmaceutycznym. Dane uzyskane w wyniku takich pomiarów zawierają informację odnośnie rodzaju i stężenia badanej substancji, jednakże są one często kłopotliwe w bezpośredniej interpretacji. Z tego powodu, istnieje konieczność wykorzystania odpowiednich metod matematycznych, które umożliwiają uzyskanie bezpośredniej i precyzyjnej...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublicationThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublicationThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks
PublicationOne of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...
-
Biomass estimation using a length-weight relationship in beetle larvae (Coleoptera: Aphodiidae, Histeridae, Hydrophilidae, Staphylinidae) obtained from cow dung
PublicationThis research enabled the relationship between length and dry body mass to be determined for 158 beetle larvaetaken from cow dung in north-eastern Poland. The larvae were divided into three morphological types, for which the power and linear function of the body length-weight relationship were determined. The linear regression equation characterizes the relationship between body weight and...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublicationThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.
PublicationIn the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...
-
Sensitivity analysis of a composite footbridge
PublicationThis work include an example of sensitivity analysis for the design of a composite footbridge. A sandwich structure is used, consisting two high-strength skins separated by a core material. The analysis was conducted for two numerical models. The first one is a simple, single-span beam of a composite cross-section (laminate and foam), with different Young’s modulus for each material. Calculations were made by means of a MATLAB-based...
-
Towards neural knowledge DNA
PublicationIn this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Early warning models against bankruptcy risk for Central European and Latin American enterprises
PublicationThis article is devoted to the issue of forecasting the bankruptcy risk of enterprises in Latin America and Central Europe. The author has used statistical and soft computing methods to program the prediction models. It compares the effectiveness of twelve different early warningmodels for forecasting the bankruptcy risk of companies. In the research conducted, the author used data on 185 companies listed on the Warsaw Stock Exchange...
-
Automatic Rhythm Retrieval from Musical Files
PublicationThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Prediction of the Biogenic Amines Index of Poultry Meat Using an Electronic Nose
PublicationThe biogenic amines index of fresh chicken meat samples during refrigerated storage was predicted based on the headspace analysis using an electronic nose equipped with an array of electrochemical sensors. The reference biogenic amines index values were obtained using dispersive liquid–liquid microextraction–gas chromatography–mass spectrometry. A prototype electronic nose with modular construction and a dedicated sample chamber...
-
Optimizing FSO networks resilient to adverse weather conditions by means of enhanced uncertainty sets
PublicationThis work deals with dimensioning of wireless mesh networks (WMN) composed of FSO (free space optics) links. Although FSO links realize broadband transmission at low cost, their drawback is sensitivity to adverse weather conditions causing transmission degradation on multiple links. Hence, designing such FSO networks requires an optimization model to find the cheapest configuration of link capacities that will be able to carry...
-
Multi-transformer primary-side regulated flyback converter for supplying isolated IGBT and MOSFET drivers
PublicationThis paper presents primary-side voltage regulated multi-transformer quasi-resonant flyback converter (MTFC) for supplying isolated power switch drivers. The proposed topology offers distinct advantages over frequently used flyback converter possessing one high frequency transformer with isolated multiple outputs. Particularly, when a large number of separate dc supply units is required, then MTFC enables improved regular distribution...
-
Artificial Intelligence Aided Architectural Design
PublicationTools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublicationThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
The role of time perspectives and impulsivity dimensions in coping styles
PublicationBoth time perspectives and impulsivity dimensions are groups of traits that are connected to self-control abilities and might be important for coping styles. However, to date, no study has systematically investigated their utility in predicting coping styles with regard to their multidimensional nature. The current study was correlational and exploratory, aiming to discover what amount of variance in each of the three coping...