Search results for: NANOPOROUS MATERIAL,BATTERIES,ANODE MATERIALS
-
N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media.
PublicationBy simple thermal decomposition of low-cost precursors (chitosan, melamine) in an inert atmosphere, nitrogen-doped porous carbonaceous materials were prepared. The samples pyrolyzed at 700 C are composed of mainly mesoporous nitrogen-doped carbon nanosheets and partially graphitized carbon. The nanosheets contain a disordered area due to the strain imposed by the presence of nitrogen and/or oxygen groups in their structure. Some...
-
Microencapsulation of fish oil – determination of optimal wall material and encapsulation methodology
PublicationFor the first time, we present a meta-analysis of experimental and literature data to determine which microencapsulation methodology, and which wall material are best suited to protect fish oil. Our analysis covered a period of several decades of research (1984–2018). The analysis was conducted on 196 literature data-points, and 16 data-points determined experimentally for this publication. PLS regression was used to determine...
-
Processing, Performance Properties, and Storage Stability of Ground Tire Rubber Modified by Dicumyl Peroxide and Ethylene-Vinyl Acetate Copolymers
PublicationIn this paper, ground tire rubber was modified with dicumyl peroxide and a variable content (in the range of 0–15 phr) of ethylene-vinyl acetate copolymers characterized by different vinyl acetate contents (in the range of 18–39 wt.%). Modification of ground tire rubber was performed via an auto-thermal extrusion process in which heat was generated during internal shearing of the material inside the extruder barrel. The processing,...
-
A Pilot Study on Machining Difficult-to-Cut Materials with the Use of Tools Fabricated by SLS Technology
PublicationThe growing use of contemporary materials in various industrial sectors, such as aerospace, automotive, as well as the oil and gas industry, requires appropriate machining methods and tools. Currently, apart from the necessity to obtain high-dimensional and shape accuracy, the efficiency and economic aspects of the selected manufacturing process are equally important, especially when difficult-to-cut materials, such as hard and...
-
Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering
PublicationSince the dawn of history concrete has been, right behind stone and brick, one of the oldest building materials. The ancient Romans took advantage of its opportunities. They constructed amazing architectural objects, which survived centuries as whole buildings or parts of them. Concrete is so ubiquitous, that when we are walking in a newer districts of cities we are virtually surrounded by concrete from everywhere. Sometimes...
-
Influence of the addition of citric acid on the physico-chemical properties of poly(sorbitol sebacate-co- butylene sebacate)
PublicationThe article presents the results of the physicochemical properties of poly(sorbitol sebacate- co-butylene sebacate) (PSBS) obtained with 0.25; 0.5; 0.75; 1 mol of citric acid (KC). It was shown that PSBS obtained with 0.25 and 0.5 mol KC is characterized by the most optimal mechanical and thermal properties. As a result of the study, it was found that the use of sorbitol and citric acid allows obtaining ester materials with...
-
M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions
PublicationThe path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem...
-
Cavitation Erosion Resistance Influence of Material Properties
PublicationThe cavitation erosion is the phenomena that causes degradation of fluid flow machinery components due to repetitive implosion of cavitation bubbles adjacent to the solid surface. Cavitation erosion is a complex phenomenon, which includes not only hydrodynamic factors of liquid, but also properties of erodible material e.g. microstructure, hardness or Young modulus. In order to reduce the negative impact of erosion on machine components,...
-
Electro-chemo-mechanical properties in nanostructured Ca-doped ceria (CDC) by field assisted sintering
PublicationRecent investigations have shown that highly oxygen defective cerium oxides generate non-classical electrostriction that is superior to lead-based ferroelectrics. In this work, we report the effect of field-assisted spark plasma sintering (SPS) on electro-chemo-mechanical properties of calcium doped ceria (CDC). Nanometric powders of Ca.10 nm are rapidly consolidated to form polycrystalline nanostructures with a high degree of...
-
Coffee silverskin as a potential bio-based antioxidant for polymer materials: Brief review
PublicationCoffee silverskin is one of the by-products generated by the coffee industry. Although it is not the most burdensome one, because it stands only for ~4.2 wt % of coffee, it seems like an auspicious raw material for industrial processes. Coffee silverskin is characterized by a relatively low moisture content of ~5–7%, so it often does not require quite energy-consuming drying processes. The chemical composition of coffee silverskin,...
-
New matrix-free reference material for ethene in the form of optical fibres
PublicationReference materials are indispensable in the qualitycontrol and quality assurance of analytical measurements. Onenovel approach to the generation of standard gaseous mixturesof toxic, reactive, volatile, labile, and malodorous substancesinvolves thermal decomposition or rearrangement, under definedtemperature conditions, of compounds immobilized, bychemical bonding, on the surface of an appropriate carrier torelease specific amounts...
-
A general isogeometric finite element formulation for rotation‐free shells with in‐plane bending of embedded fibers
PublicationThis article presents a general, nonlinear isogeometric finite element formulation for rotation-free shells with embedded fibers that captures anisotropy in stretching, shearing, twisting, and bending - both in-plane and out-of-plane. These capabilities allow for the simulation of large sheets of heterogeneous and fibrous materials either with or without matrix, such as textiles, composites, and pantographic structures. The work...
-
Morphology and structure of ammonium vanadates synthesis by hydrothermal method
Open Research DataThe DataSet contains the XRD patterns, FTIR spectra, and scanning electron microscopy (SEM) micrographs of ammonium vanadates synthesis by hydrothermal method from different NH4VO3 precursors. The results reveal that a mixture of (NH4)V4O10xH2O and(NH4)0.76V4O10 was obtained for both precursors, however the contribution of each phase was different for...
-
The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes
PublicationFossil fuels became increasingly unpleasant energy source due to their negative impact on the environment; thus, attractiveness of renewable, and especially solar energy, is growing worldwide. Among others, the research is focused on smart combination of simple compounds towards formation of the photoactive materials. Following that, our work concerns the optimized manipulation of laser light coupled with the iron sputtering to...
-
Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach
PublicationComplex structures can now be manufactured easily utilizing AM technologies to meet the pre-requisite objectives such as reduced part numbers, greater functionality, and lightweight, among others. Polymers, metals, and ceramics are the few materials that can be used in AM technology, but metallic materials (Magnesium and Aluminum) are attracting more attention from the research and industrial point of view. Understanding the role...
-
Application of Galvanostatic Non-Linear Impedance Spectroscopy to the Analysis of Metallic Material Degradation
PublicationThis study presents a novel application of Non-Linear Electrochemical Impedance Spectroscopy (NLEIS) in galvanostatic mode for the rapid, non-destructive assessment of metal degradation. By using galvanostatic mode instead of traditional potentiostatic methods, polarization-related challenges are mitigated, enabling more accurate and reliable analysis. The technique allows for the determination of corrosion rates (corrosion current)...
-
Importance of Specific Heat Characterization when Reporting New Superconductors: An Example of Superconductivity in LiGa2Rh
PublicationWe show that the full-Heusler compound LiGa2Rh is a superconductor with Tc = 2.4 K. The new superconductor was found as a result of an intuition-based extension of a database search for superconductors that looked for the presence of peaks in the electronic band structure near the Fermi energy. The measurement of the entropy loss during the transition from the nonsuperconducting to the superconducting state, a straightforward measurement...
-
Rheology of polymer blends
PublicationPolymer blends are physical mixtures of two or more homopolymers or copolymers. This type of materials have wide spectrum of technological applications, and their properties are influenced, e.g., by the properties of single components and morphology of final material. The rheology of polymer blends is connected with the processing of polymer blends and is influenced by thermodynamics, morphology, and their evolution during testing....
-
Magnetic switching of Kerker scattering in spherical microresonators
PublicationMagneto-optical materials have become a key tool in functional nanophotonics, mainly due to their ability to offer active tuning between two different operational states in subwavelength structures. In the long-wavelength limit, such states may be considered as the directional forward- and back-scattering operations, due to the interplay between magnetic and electric dipolar modes, which act as equivalent Huygens sources. In this...
-
Electrodes consisting of PEDOT modified by Prussian Blue analogues deposited onto titania nanotubes – Their highly improved capacitance
PublicationIn this work we present the outstanding energy storage of prepared inorganic-organic heterojunction where hydrogenated ordered titania nanotubes (H-TiO2NT) were modified by the hybrid made of poly(3,4-ethylenedioxythiophene) (pEDOT) and iron hexacyanoferrate centres (Fehcf, Prussian Blue). The material TiO2NT/pEDOT:Fechf was obtained electrochemically by means of: anodization, hydrogenation and finally, electropolymerization of...
-
Nonlinear Modeling in Time Domain Numerical Analysis of Stringed Instrument Dynamics
PublicationMusical instruments are very various in terms of sound quality with their timbre shaped by materials and geometry. Materials' impact is commonly treated as dominant one by musicians, while it is unclear whether it is true or not. The research proposed in the study focuses on determining influence of both these factors on sound quality based on their impact on harmonic composition. Numerical approach has been chosen to allowed independent...
-
The Application of Granulated Expanded Glass Aggregate with Cement Grout as an Alternative Solution for Sub-Grade and Frost-Protection Sub-Base Layer in Road Construction
PublicationThe purpose of the research was to assess the possibility of using granulated expanded glass aggregate (GEGA) with cement grout as a replacement of a sub-grade and frost-protection layer, made of natural fine aggregates (NATU), stabilized with a hydraulic binder. Instead of traditional parts of the road construction, such as the sub-grade and frost-protection layer with the application of fine aggregate, stabilized with cement,...
-
Structured deformation of granular material in the state of active earth pressure
PublicationThe paper focuses on the ability of granular materials to undergo structured deformation by analysing the data from the retaining wall model tests and discrete element simulations. The structured deformation means the movement of a granular material which produces a stable, regular pattern of multiple shear bands. The paper's primary purpose is to study this kind of deformation for the selected data representing the state of active...
-
Experimental Evaluation of ND: YAG Laser Parameters and Sample Preparation Methods for Texturing Thin AISI 316L Steel Samples
PublicationIn mechanical and material engineering, the effect of laser texturing depends on many factors besides device specification, primarily the properties of the materials being processed, and, secondly, the preparation of the sample. Laser texturing of thin (<5 mm) samples is mostly performed utilizing short-pulse lasers, but depending on the power of the laser beam, the process can also be performed by using continuous operation lasers....
-
Vernacular and low-tech technologies in humanitarian architecture on the example of Senegal
PublicationHumanitarian architecture belongs to the broader trend of socially engaged architecture, whose main goal is to introduce new values to the quality of life of particular communities. Specifically, humanitarian architecture deals with aid to poverty-stricken communities. The context of economic constraints poses a particular challenge to architects and builders. It is a matter of natural necessity to look for cheap, locally available...
-
Preparation and Characterization of Films Based on Disintegrated Bacterial Cellulose and Montmorillonite
PublicationThe food packaging materials from natural polymers including polysaccharides offer an ecologically important alternative to commonly used synthetic, non-biodegradable counterparts. The purpose of this work was to modify of bacterial cellulose (BC) leading to the improvement of its functional properties in terms of use as a food packaging material. Effects of disintegration of BC and addition of montmorillonite (MMT) on its water...
-
Compliance tests of the polymer layers used as hydrodynamic bearing coatings
PublicationOperational experience and scientific investigations results showed that polymer lined hydrodynamic bearings can withstand more severe operating conditions compared than white metal bearings. PTFE and PEEK-based coatings are the most frequently used as Babbitt alternatives. Both polymers differ significantly from the each other in material properties. According to catalogue data compression modulus of PTFE, it is about an order...
-
Emission of 1.3–10 nm airborne particles from brake materials
PublicationOperation of transport vehicle brakes makes a significant contribution to airborne particulate matter in urban areas, which is subject of numerous studies due to the environmental concerns. We investigated the presence and number fractions of 1.3–10 nm airborne particles emitted from a low-metallic car brake material (LM), a non-asbestos organic car brake material (NAO) and a train brake cast iron against a cast iron. Particles...
-
Photocatalytic activity of zinc oxide nanorods incorporated graphitic carbon nitride catalyst
PublicationBackground Photocatalysts are user-friendly and serve as compatible materials for degrading industrial dye pollutants. This study utilizes zinc oxide/graphitic carbon nitride (ZnO/g-C3N4) nanocomposites against degrading methylene blue (MB). Methods The hydrothermal method assisted sonication technique was used to fabricate the ZnO/g-C3N4 composite with varying ratios of ZnO/g-C3N4 (1:0.25, 1:0.50, 1:1). The synthesized materials...
-
Effect of Polymerization Statistics on the Electronic Properties of Copolymers for Organic Photovoltaics
PublicationStatistical block copolymers, composed of donor (D) and acceptor (A) blocks, are a novel type of material for organic photovoltaics (OPVs) devices. In particular a new series of polymers based on PBTZT-stat-BDTT-8, recently developed by Merck, offers high solubility in different solvents, and a high power conversion efficiency (PCE) in different device architectures. Although it is known that the electronic properties of these...
-
Application of foam made of post-consumer pet materials for the construction of footbridges
PublicationThe article presents the possibility of application in civil engineering of highly ecological PET foam, manufactured from 100% recycled plastic packaging. It may find uses in construction of numerous engineering structures, such as pedestrian and cycle footbridges. Properly processed waste from post-consumer PET packaging may constitute a quality structural core for use in multilayered composite materials, commonly referred to...
-
Structural investigations of niobium-doped bioactive calcium-phosphate glass-ceramics by means of spectroscopic studies
PublicationSynthetic calcium-phosphate based glasses and glass-ceramics play a crucial role in the development of tissue engineering. These materials have a high biocompatibility with biological analogues, excellent ability to undergo varying degrees of resorbability and due to their non-toxicity and relatively high bioactivity they are commonly used as bone and dental implants. A substantial research effort is devoted to improve synthetic...
-
THE ROLE OF DAYLIGHT IN ARCHITECTURAL CREATIONS OF CONTEMPORARY CULTURAL FACILITIES
PublicationThe paper studies the role of light in architectural creations of contemporary buildings of representative function. Based on the selected projects and completed buildings dedicated to culture and art, it analyzes and systematizes the examples of using light to obtain visual effects that mark the architecture with a universal and timeless message. The method of research is case study and critical analysis of literature. Light plays...
-
Depth chemical profile in a CeIr3 sample
Open Research DataThe polycrystalline sample of CeIr3 used in the present studies was synthesized by arc-melting cerium (4N) and iridium (3N5) in an arc furnace on a water-cooled copper hearth using a tungsten electrode under a high purity argon atmosphere. A piece of zirconium was used as an oxygen getter. First, a button of Ir was prepared by arc-melting the iridium...
-
Tailoring Physicochemical Properties of V2O5 Nanostructures: Influence of Solvent Type in Sol-Gel Synthesis
PublicationThe influence of different solvents, including aqueous and nonaqueous types, on the physicochemical properties of V2O5 nanostructures was thoroughly investigated. Various characterization techniques, such as XRD, XPS, FTIR, Raman spectroscopy, UV-vis DRS, SEM, TEM, and BET, were employed to analyze the obtained materials. Additionally, the adsorption properties of the synthesized V2O5 nanostructures for methylene blue were examined,...
-
The low temperature waste heat recovery in drying process of pine wood using micro-jet heat exchanger
PublicationThe article presents the influence of the drying medium temperature changes for the relative and absolute moisture content values during pine wood drying. The drying process was conducted at constant atmospheric pressure and with different drying medium (air) temperature levels, respectively: 40oC, 60oC, 80oC, 100oC, and 120oC. In order to develop a method that would enable low temperature drying of solid materials the experiments...
-
Experimental and numerical evaluation of mechanical behaviour of composite structural insulated wall panels under edgewise compression
PublicationA composite structural insulated sandwich panel (CSIP) is a quite novel approach to the idea of sandwich structures. A series of natural-scale experimental test is required each time a change in panel’s geometry is planned and a reliable computational tool is required to precede actual laboratory testing with virtual simulations. An attempt of creating such a tool has been made with use of a commercial FEM code ABAQUS, in order...
-
New approach for the synthesis of Ag3PO4-graphene photocatalysts
PublicationA facile and effective plasma sputtering method for the preparation of a visible light active photocatalyst - rhombic dodecahedral silver phosphate Ag3PO4 covered with nanographene (Ag3PO4-GR) with improved stability has been developed. Proposed method allows for the usage of readily available materials for nanographene sputtering and for easy scaling-up. The stability improvement, confirmed by visible light-induced phenol degradation...
-
Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost
PublicationImplementing metal-free electrocatalysts for the oxygen reduction reaction (ORR) and revealing crucial chemical or topographical parameters driving their activity are vital for the development of power cells. The carbon-based catalysts are very often synthesized through carbonization of biopolymers, in particular, those one containing nitrogen groups such as chitosan. Unfortunately, the resulting carbonaceous materials usually...
-
Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding
PublicationIt is a common situation that seismic excitations may lead to collisions between adjacent civil engineering structures. This phenomenon, called earthquake-induced structural pounding, may result in serious damage or even the total collapse of the colliding structures. Filling the gap between two buildings erected close to one another by using visco-elastic materials can be considered to be one of the most effective methods to avoid...
-
Wpływ wybranych parametrów środowiska na przebieg degradacji rur okładzinowych ze stali P110
PublicationMateriały używane na orurowanie odwiertów w poszukiwaniu i wydobyciu ropy i gazu poddawane są niekorzystnym warunkom eksploatacji takich jak: podwyższona temperatura, wysokie ciśnienie, turbulentny przepływ korozyjnych cieczy z zawieszonymi cząstkami stałymi. Jednym z gatunków stali używanych do produkcji rur okładzinowych jest stal P110 (za normą API 5CT) będąca stalą średnio-węglową, niskostopową o wysokiej wytrzymałości. Celem...
-
Corrosion process monitoring by AFM higher harmonic imaging
PublicationThe atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM's higher cantilever modes when the cantilever...
-
Image-based numerical modeling of the tensile deformation behavior and mechanical properties of additive manufactured Ti–6Al–4V diamond lattice structures
PublicationThis work concerns the numerical modeling of the deformation process and mechanical properties of structures obtained by the additive method laser power bed fusion (LPBF). The investigation uses diamond structures of Ti–6Al–4V titanium implantation alloy with various relative densities. To model the process of tensile deformation of the materials, geometric models were used, mapping the realistic shape of the examined structures....
-
Modeling of free vibrations and resonant frequencies of simply-supported submerged horizontal plate
PublicationA theoretical approach was applied to study the vibration of simple-supported submerged horizontal plate. The derived analytical solution was used to determine natural frequencies for a horizontal plate vibrating in fluid. The investigations were conducted for a very wide range of material density and elasticity modulus covering all materials used in engineering practice. Analysis shows that plate vibration frequency decreases...
-
Recycling of Photovoltaic Solar Cells and Modules - Te State - Of - Art
PublicationIn comparison to other energy producing techniques, photovoltaics (PV) is one of the most promising options: no emission of any matter into the environment during operation; extremely long operation period (estimated average: 25 years), minimum maintenance, robust technique, aesthetic aspects. The use of photovoltaics is rapidly increasing, and the respective market is developing accordingly. Although PV manufacturing equipment...
-
CURRENT TRENDS IN RECYCLING OF PHOTOVOLTAIC SOLAR CELLS AND MODULES WASTE
PublicationIn comparison to other energy producing techniques, photovoltaics (PV) is one of the most promising options: no emission of any matter into the environment during operation; extremely long operation period (estimated average: 25 years), minimum maintenance, robust technique, aesthetic aspects. The use of photovoltaics is rapidly increasing, and the respective market is developing accordingly. Although PV manufacturing equipment...
-
The role of aluminium in metal–organic frameworks derived carbon doped with cobalt in electrocatalytic oxygen evolution reaction
PublicationWater electrolysis is one of the most crucial processes in the development of new energy sources, where ultra-clean fuel is produced - hydrogen. Oxygen evolution reaction (OER) is the sluggish process of overall water splitting. Therefore, this study presents the design, characterization and electrochemical study of cobalt-based electrocatalysts embedded into porous carbons derived from an Al-metal–organic...
-
A Comprehensive Review of Reactive Flame Retardants for Polyurethane Materials: Current Development and Future Opportunities in an Environmentally Friendly Direction
PublicationPolyurethanes are among the most significant types of polymers in development; thesematerials are used to produce construction products intended for work in various conditions. Nowa-days, it is important to develop methods for fire load reduction by using new kinds of additivesor monomers containing elements responsible for materials’ fire resistance. Currently, additiveantipyrines or reactive flame retardants can be used during...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublicationThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Emission and properties of airborne wear particles from train brake friction materials based on novolac phenolic resins and butadiene rubbers
PublicationThe emission of airborne particulate matter from a train brake depends on the formulation of its friction material. This study investigates the emission and properties of wear particles from train brake friction materials based on straight or resorcinol-modified novolac phenolic resin and nitrile or styrene butadiene rubber used as binding ingredients. The wear particles are generated by a pin-on-disc tribomachine inside an aerodynamic...