Filters
total: 1049
filtered: 872
Search results for: INTELLIGENT SIGNAL PROCESSING, MACHINE LEARNING, DATASETS
-
Application of the Fractional Fourier Transform for dispersion compensation in signals from a fiber-based Fabry-Perot interferometer
PublicationOptical methods of measurement do not require contact of a probe and the object under study, and thus have found use in a broad range of applications such as nondestructive testing (NDT), where noninvasive measurement is crucial. Measuring the refractive index of a material can give a valuable insight into its composition. Low‑coherence radiation sources enable measurement of the sample’s properties across a wide spectrum, while...
-
Transiluminacyjne monitorowanie stanu przestrzeni podpajęczynówkowej
PublicationTransiluminacja tkanek ludzkiego ciała w celach diagnostycznych jest stosowana od ponad stu lat. Metoda transiluminacji w bliskiej podczerwieni z rozpraszaniem zwrotnym (NIRT-BSS) umożliwia ciągłe, bezinwazyjne monitorowanie zmian szerokości przestrzeni podpajęczynówkowej, które może być cennym narzędziem w ocenie zagrożenia obrzękiem mózgu. W rozprawie przedstawiono optyczny model rozchodzenia się promieniowania podczerwonego...
-
Conducted emi identification in power electronic converters : modeling of EMI generation and propagation using circuit simulation and wiener filtering methods.
PublicationThis work presents the circuit simulations and the conventional signal processing technique (Wiener filtering) in order to reconstruct conducted ElectroMagnetic Interferences (EMI), generated and propagated in power electronics converters. In the simulation study, the most accurate presently available models of components of circuit have been used and improved. The proposed Wiener filtering method allows to identifying the transfer...
-
Method for the correlation coefficient estimation of the bottom echo signal in the shallow water application using interferometric echo sounder
PublicationThe article presents a new method for the assessment of bottom echo correlation coefficient in the presence of multiple echoes. Bottom correlation coefficient is a parameter that characterizes spatial properties of echo signal. Large variability of the bottom shape or properties (for example caused by the presence of bottom objects) and the presence of the acoustic shadow strongly influence the value of the correlation coefficient....
-
Acoustic Processor of the Mine Countermeasure Sonar
PublicationThis paper presents the concept of an acoustic processor of the mine countermeasure sonar. Developed at the Department of Marine Electronics Systems, Gdansk University of Technology, the acoustic processor is an element of the MG-89, an underwater acoustic station. The focus of the article is on the modules of the processor. They are responsible for sampling analogue signals and implementing the algorithms controlling the measurement...
-
A Study on Audio Signal Processed by "Instant Mastering"
PublicationAn increasing amount of music produced in home- and project-studios results in development and growth of "automatic mastering services". The presented investigation explores changes introduced to audio signal by various online mastering platforms. A music set consisting of 10 songs produced in small facilities was processed by eight on-line automatic mastering services. Additionally, some laboratory-constructed signals were tested....
-
MSIS sonar image segmentation method based on underwater viewshed analysis and high-density seabed model
PublicationHigh resolution images of Mechanically Scanned Imaging Sonars can bring detailed representation of underwater area if favorable conditions for acoustic signal to propagate are provided. However to properly asses underwater situation based solely on such data can be challenging for less than proficient interpreter. In this paper we propose a method to enhance interpretative potential of MSIS image by dividing it in to subareas depending...
-
Accurate Post-processing of Spatially-Separated Antenna Measurements Realized in Non-Anechoic Environments
PublicationAntenna far-field performance is normally evaluated in expensive laboratories that maintain strict control over the propagation environment. Alternatively, the responses can be measured in non-anechoic conditions and then refined to extract the information on the structure field-related behavior. Here, a framework for correction of antenna measurements performed in non-anechoic test site has been proposed. The method involves automatic...
-
Sleep Apnea Detection by Means of Analyzing Electrocardiographic Signal
PublicationObstructive sleep apnea (OSA) is a condition of cyclic, periodic ob-struction (stenosis) of the upper respiratory tract. OSA could be associated with serious cardiovascular problems, such as hypertension, arrhythmias, hearth failure or peripheral vascular disease. Understanding the way of connection between OSA and cardiovascular diseases is important to choose proper treatment strategy. In this paper, we present a method for integrated...
-
Lamb wave-based monitoring of shear failure of an adhesive lap joint
PublicationThe paper presents a study on the elastic wave propagation in adhesive joints of steel plates subjected to tensile loading. A single lap joint was chosen for analysis because of its simplicity and plurality of applications. Experimental investigations consisted of the uniaxial extension of prepared specimens. Force and displacement values were recorded by a testing machine. Simultaneously, guided Lamb waves were excited and signals...
-
A tool for integrating Web Site services over User Interface
PublicationCompanies and organizations are building information systems by integrating previously independent applications, together with new developments. This integration process has to deal with existing applications, which can only be used through their specific interfaces, and often cannot be modified. Integration of web applications running remotely and controlled by separate organizations becomes even more complicated, as their user...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublicationIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques
PublicationDeception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques....
-
SpamVis: A Visual Interactive System for Spam Review Detection
PublicationIn recent times, the number of spam reviews through various online platforms has emerged as a prime challenge, profoundly impacting businesses and consumers. These fake reviews not only distort clients’ perceptions of products and services but also erode trust within the digital ecosystem. Despite the advent of machine learning (ML) techniques for identifying spam reviews, comparing text, and pinpointing groups of spammers, there...
-
Decoding imagined speech for EEG-based BCI
PublicationBrain–computer interfaces (BCIs) are systems that transform the brain's electrical activity into commands to control a device. To create a BCI, it is necessary to establish the relationship between a certain stimulus, internal or external, and the brain activity it provokes. A common approach in BCIs is motor imagery, which involves imagining limb movement. Unfortunately, this approach allows few commands. As an alternative, this...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
APPLICATION OF VIBRATION SIGNALS IN RAILWAY TRACK DIAGNOSTICS USING A MOBILE RAILWAY PLATFORM
PublicationThe article presents a comprehensive method for using vibration signals to diagnose railway tracks. The primary objective is to gather detailed information on track conditions through a passive experiment. This involves using mobile diagnostic tools and techniques to assess railway infrastructure. The article elaborates on the range of diagnostic activities conducted in accordance with detailed railway regulations and highlights...
-
Bimodal classification of English allophones employing acoustic speech signal and facial motion capture
PublicationA method for automatic transcription of English speech into International Phonetic Alphabet (IPA) system is developed and studied. The principal objective of the study is to evaluate to what extent the visual data related to lip reading can enhance recognition accuracy of the transcription of English consonantal and vocalic allophones. To this end, motion capture markers were placed on the faces of seven speakers to obtain lip...
-
Acoustic Processor of the MCM Sonar
PublicationThis paper presents the concept of an acoustic processor of the mine countermeasure sonar. Developed at the Department of Marine Electronics Systems, Gdansk University of Technology, the acoustic processor is an element of the MG-89, a modernised underwater acoustic station. The focus of the article is on the modules of the processor. They are responsible for sampling analogue signals and implementing the algorithms controlling...
-
Laser reflectance interferometry system with a 405 nm laser diode for in-situ measurement of CVD diamond thickness
PublicationIn situ monitoring of the thickness of thin diamond films during technological processes is important because it allows better control of deposition time and deeper understanding of deposition kinetics. One of the widely used techniques is laser reflectance interferometry (LRI) which enables non-contact measurement during CVD deposition. The authors have built a novel LRI system with a 405 nm laser diode which achieves better...
-
Measurements of transmission properties of Acoustic Communication Channels
PublicationTough transmission properties of shallow water acoustic channels (SWAC) highly limit the use of underwater acoustic communication (UAC) systems. An adaptive matching of modulation and signaling schemes to instantaneous channel conditions is needed for reliabledata communications. This creates, however, unique challenges for designers when compared to radio transmission systems. When communication system elements are in move, the...
-
Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance
PublicationInduction motors are one of the most widely used electrical machines. Statistics of bearing failures of induction motors indicate, that they constitute more than 40% of induction motor damage. Therefore, bearing diagnosis is so important for trouble-free work of induction motors. The most common methods of bearing diagnosis are based on vibration signal analysis. The main disadvantage of those methods is the need for physical access...
-
Half-Order Modeling of Saturated Synchronous Machine
PublicationNoninteger order systems are used to model diffusion in conductive parts of electrical machines as they lead to more compact and knowledge models but also to improve their precision. In this paper a linear half-order impedance model of a ferromagnetic sheet deduced from the diffusion of magnetic field is briefly introduced. Then, from physical considerations and finite elements simulation, the nonlinear half-order impedance model...
-
MCSA with Normalized Triple Covariance as a bearings diagnostic indicator in an induction motor
PublicationStatistics of bearing failures in induction motors indicate, that they constitute more than 40% of IM damage, therefore bearing diagnosis is very important. Vibration methods for bearing diagnostics have one major disadvantage - they require the availability of the machine for sensors installation. This is the reason for seeking new methods based on motor supply current analysis. Diagnosis of induction motors, conducted remotely...
-
Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach
PublicationIn this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using lowprofile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely on received signal strength...
-
Threat intelligence platform for the energy sector
PublicationIn recent years, critical infrastructures and power systems in particular have been subjected to sophisticated cyberthreats, including targeted attacks and advanced persistent threats. A promising response to this challenging situation is building up enhanced threat intelligence that interlinks information sharing and fine-grained situation awareness. In this paper a framework which integrates all levels of threat intelligence...
-
Thermo-mechanical reclaiming of ground tire rubber via extrusion at low temperature: Efficiency and limits
PublicationThermomechanical reclaiming of ground tire rubber (GTR) was performed at different temperatures (60, 120, and 180°C) using a co-rotating twin-screw extruder. Obtained samples were used in styrene-butadiene rubber (SBR) blends. As reference samples, SBR compounds containing untreated GTR were used. Curing characteristics, static and dynamic mechanical properties, and morphology of the obtained blends were determined. The results...
-
High frequency oscillations are associated with cognitive processing in human recognition memory
PublicationHigh frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations...
-
Deep Video Multi-task Learning Towards Generalized Visual Scene Enhancement and Understanding
PublicationThe goal of this thesis was to develop efficient video multi-task convolutional architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task relationships and ii) motion information to improve multi-task performance. The approach we take starts from the integration of diverse tasks within video multi-task learning networks. We present the first two datasets of their kind in the existing literature, featuring...
-
Identification of category associations using a multilabel classifier
PublicationDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Path-based methods on categorical structures for conceptual representation of wikipedia articles
PublicationMachine learning algorithms applied to text categorization mostly employ the Bag of Words (BoW) representation to describe the content of the documents. This method has been successfully used in many applications, but it is known to have several limitations. One way of improving text representation is usage of Wikipedia as the lexical knowledge base – an approach that has already shown promising results in many research studies....
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublicationIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Data on LEGO sets release dates and worldwide retail prices combined with aftermarket transaction prices in Poland between June 2018 and June 2023
PublicationThe dataset contains LEGO bricks sets item count and pricing history for AI-based set pricing prediction. The data spans the timeframe from June 2018 to June 2023. The data was obtained from three sources: Brickset.com (LEGO sets retail prices, release dates, and IDs), Lego.com official web page (ID number of each set that was released by Lego, its retail prices, the current status of the set) and promoklocki.pl web page (the retail...
-
Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?
PublicationThe estimation of electric power utilization, its baseload, and its heating, light, ventilation, and air-conditioning (HVAC) power component, which represents a very large portion of electricity usage in commercial facilities, are important for energy consumption controls and planning. Non-intrusive load monitoring (NILM) is the analytical method used to monitor the energy and disaggregate total electrical usage into appliance-related...
-
Day-ahead Solar Power Forecasting Using LightGBM and Self-Attention Based Encoder-Decoder Networks
PublicationThe burgeoning trend of integrating renewable energy harvesters into the grid introduces critical issues for its reliability and stability. These issues arise from the stochastic and intermittent nature of renewable energy sources. Data-driven forecasting tools are indispensable in mitigating these challenges with their rugged performance. However, tools relying solely on data-driven methods often underperform when an adequate...
-
Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition
PublicationThe article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...
-
IoT Based Intelligent Pest Management System for Precision Agriculture
PublicationDespite seemingly inexorable imminent risks of food insecurity that hang over the world, especially in developing countries like Pakistan where traditional agricultural methods are being followed, there still are opportunities created by technology that can help us steer clear of food crisis threats in upcoming years. At present, the agricultural sector worldwide is rapidly pacing towards technology-driven Precision Agriculture...
-
Evaluation of a company’s image on social media using the Net Sentiment Rate
PublicationVast amounts of new types of data are constantly being created as a result of dynamic digitization in all areas of our lives. One of the most important and valuable categories for business is data from social networks such as Facebook. Feedback resulting from the sharing of thoughts and emotions, expressed in comments on various products and services, is becoming the key factor on which modern business is based. This feedback is...
-
MRM–MS of marker peptides and their abundance as a tool for authentication of meat species and meat cuts in single-cut meat products
PublicationThe abundance of protein markers in different types of meat cuts was explored in the context of authentication of raw meat (pork, beef and chicken) and processed meat products. Peptides originating from myoglobin (Mb) and myosin (My) were analyzed using multiple reaction monitoring mass spectrometry (MRM–MS). Analytical protocol was optimized for good repeatability (CV < 10%) and high sensitivity. The MS signal intensity of Mb...
-
Anatomy of noise in quantitative biological Raman spectroscopy
PublicationRaman spectroscopy is a fundamental form of molecular spectroscopy that is widely used to investigate structures and properties of molecules using their vibrational transitions. It relies on inelastic scattering of monochromatic laser light irradiating the specimen. After appropriate filtering the scattered light is dispersed onto a detector to determine the shift from the excitation wavelength, which appears in the form of...
-
Histogram of Oriented Gradients with Cell Average Brightness for Human Detection
PublicationA modification of the descriptor in a human detector using Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is presented. The proposed modification requires inserting the values of average cell brightness resulting in the increase of the descriptor length from 3780 to 3908 values, but it is easy to compute and instantly gives ≈ 25% improvement of the miss rate at 10‒4 False Positives Per Window (FPPW). The...
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublicationRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Marking the Allophones Boundaries Based on the DTW Algorithm
PublicationThe paper presents an approach to marking the boundaries of allophones in the speech signal based on the Dynamic Time Warping (DTW) algorithm. Setting and marking of allophones boundaries in continuous speech is a difficult issue due to the mutual influence of adjacent phonemes on each other. It is this neighborhood on the one hand that creates variants of phonemes that is allophones, and on the other hand it affects that the border...
-
Determination of Odor Air Quality Index (OAQII) Using Gas Sensor Matrix
PublicationThis article presents a new way to determine odor nuisance based on the proposed odor air quality index (OAQII), using an instrumental method. This indicator relates the most important odor features, such as intensity, hedonic tone and odor concentration. The research was conducted at the compost screening yard of the municipal treatment plant in Central Poland, on which a self-constructed gas sensor array was placed. It consisted...
-
Interpretation and modeling of emotions in the management of autonomous robots using a control paradigm based on a scheduling variable
PublicationThe paper presents a technical introduction to psychological theories of emotions. It highlights a usable ideaimplemented in a number of recently developed computational systems of emotions, and the hypothesis thatemotion can play the role of a scheduling variable in controlling autonomous robots. In the main part ofthis study, we outline our own computational system of emotion – xEmotion – designed as a key structuralelement in...
-
Experimental determination of general characteristic of internal combustion engine using mobile test bench connected via Power Take-Off unit
PublicationThe general characteristics of the engine include information about the regions of the engine's operating area that are most efficient, where specific fuel consumption reaches the smallest values. Economic operation based on those characteristics can contribute to a significant reduction of fuel consumption and consequently less pollutant emissions and lower costs. The paper presents an experimental method of determination of general...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublicationMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....