Filters
total: 2200
filtered: 1892
displaying 1000 best results Help
Search results for: LINEAR DIOPHANTIE EQUATIONS
-
A Compact Basis for Reliable Fast Frequency Sweep via the Reduced-Basis Method
PublicationA reliable reduced-order model (ROM) for fast frequency sweep in time-harmonic Maxwell’s equations by means of the reduced-basis method is detailed. Taking frequency as a parameter, the electromagnetic field in microwave circuits does not arbitrarily vary as frequency changes, but evolves on a very low-dimensional manifold. Approximating this low-dimensional manifold by a low dimension subspace, namely, reduced-basis space, gives...
-
Modeling of medium flow processes in transportation pipelines - the synthesis of their state-space models and the analysis of the mathematical properties of the models for leak detection purposes
PublicationThe dissertation concerns the issue of modeling the pipeline flow process under incompressible and isothermal conditions, with a target application to the leak detection and isolation systems. First, an introduction to the model-based process diagnostics is provided, where its basic terminology, tools, and methods are described. In the following chapter, a review of the state of the art in the field of leak detection and isolation...
-
Generalized temperature dependence model for anammox process kinetics
PublicationTemperature is a key operational factor influencing the anammox process kinetics. In particular, at temperatures below 15 °C, the specific anammox activity (SAA) considerably decreases. This study aimed to describe the temperature dependence of the anammox process kinetics in the temperature range from 10 to 55 °C, including the specific characteristics of“cold anammox”. The commonly used Arrhenius and extended and modifiedRatkowsky...
-
The Point Estimate Method in a Reticulated Shell Reliability Analysis
PublicationThe objective of this paper is to present an application of the point estimate method (PEM) to determine the probabilistic moments for engineering structures. Reliability analysis is illustrated by two examples: an estimation of the critical force in linear elastic buckling analysis and a reticulated shell limit load determinations. Calculations were also made using Monte Carlo method. It has been shown the practical usefulness...
-
Towards increasing F-measure of approximate string matching in O(1) complexity
PublicationThe paper analyzes existing approaches for approximate string matching based on linear search with Levenshtein distance, AllScan and CPMerge algorithms using cosine, Jaccard and Dice distance measures. The methods are presented and compared to our approach that improves indexing time using Locally Sensitive Hashing. Advantages and drawbacks of the methods are identified based on theoretical considerations as well as empirical evaluations...
-
Prediction of Processor Utilization for Real-Time Multimedia Stream Processing Tasks
PublicationUtilization of MPUs in a computing cluster node for multimedia stream processing is considered. Non-linear increase of processor utilization is described and a related class of algorithms for multimedia real-time processing tasks is defined. For such conditions, experiments measuring the processor utilization and output data loss were proposed and their results presented. A new formula for prediction of utilization was proposed...
-
Uproszczone metody obliczania wyboczenia silosów z blachy falistej wzmocnionych słupami na podstawie analizy MES i wyników doświadczalnych
PublicationRozprawa doktorska dotyczy zagadnienia stateczności i nośności granicznej stalowych silosów z płaszczem z blachy falistej wzmocnionych pionowymi słupami. Przeprowadzono zaawansowane analizy numeryczne MES oraz badania doświadczalne dotyczące wyboczenia/stateczności analizowanych silosów. Analizy numeryczne zostały przeprowadzone w zakresie liniowej oraz nieliniowej analizy stateczności, z uwzględnieniem wstępnych imperfekcji geometrycznych...
-
A Quasi-2D MOSFET Model — 2D-to-Quasi-2D Transformation
PublicationA quasi-two-dimensional (quasi-2D) representation of the MOSFET channel is proposed in this work. The representation lays the foundations for a quasi 2D MOSFET model. The quasi 2D model is a result of a 2D into quasi 2D transformation. The basis for the transformation are an analysis of a current density vector field and such phenomena as Gradual Channel Detachment Effect (GCDE), Channel Thickness Modulation Effect (CTME), and...
-
Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow
PublicationTwo explicit schemes of the finite difference method are presented and analyzed in the paper. The applicability of the Lax-Wendroff and McCormack schemes for modeling unsteady rapidly and gradually varied open channel flow is investigated. For simulation of the transcritical flow the original and improved McCormack scheme is used. The schemes are used for numerical solution of one dimensional Saint-Venant equations describing free...
-
Approximate models and parameter analysis of the flow process in transmission pipelines
Publicationthe paper deals with the problem of early leak detection in transmission pipelines. First we present the derivation of state-space equations of the flow process in the pipelines. This description is then aggregated in order to obtain a principal model. Next, the problem of process model parameterization is addressed, taking into account the maximization of a model stability margin. The location of the maximum is determined using...
-
Discussion of “Development of an Accurate Time integration Technique for the Assessment of Q-Based versus h-Based Formulations of the Diffusion Wave Equation for Flow Routing” by K. Hasanvand, M.R. Hashemi and M.J. Abedini
PublicationThe discusser read the original with great interest. It seems, however, that some aspects of the original paper need additional comments. The authors of the original paper discuss the accuracy of a numerical solution of the diffusion wave equation formulated with respect to different state variables. The analysis focuses on nonlinear equations in the form of a single transport equation with the discharge Q (volumetric flow rate)...
-
Smooth Particle Hydrodynamics (SPH) approach in simulating large penetration into soil
PublicationA study of Smooth Particle Hydrodynamics (SPH) approach for predicting large soil deformation is presented. Theoretical basics of SPH method, including the equations governing, discussion of the importance of smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocodes simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into soil caused...
-
Predicting the viscosity and electrical conductivity of ionic liquids on the basis of theoretically calculated ionic volumes
PublicationSelected physical properties of the ionic liquids might be quantitatively predicted based on the volumes of the ions these systems are composed of. It is demonstrated that the ionic volumes calculated using relatively simple theoretical quantum chemistry methods can be utilised to estimate the viscosities and electrical conductivities of various commonly used ionic liquids. The fitting formulas of the exponential form are offered...
-
Asynchronous Method of Simultaneous Object Position and Orientation Estimation with Two Transmitters
PublicationThis paper proposes an object location method for all types of applications, including the Internet of Things. The proposed method enables estimations of the position and orientation of an object on a plane or in space, especially during motion, by means of location signals transmitted simultaneously from two transmitters placed on the object at a known distance from each other. A mathematical analysis of the proposed method and...
-
Surface finite viscoelasticity and surface anti-plane waves
PublicationWe introduce the surface viscoelasticity under finite deformations. The theory is straightforward generalization of the Gurtin–Murdoch model to materials with fading memory. Surface viscoelasticity may reflect some surface related creep/stress relaxation phenomena observed at small scales. Discussed model could also describe thin inelastic coatings or thin interfacial layers. The constitutive equations for surface stresses are...
-
Energy conversion in systems-contained laser irradiated metallic nanoparticles - comparison of results from analytical solutions and numerical methods
PublicationThis work introduces the theoretical method of metallic nanoparticles’ (NPs’) heat and mass transfer where the particles are coated on a surface (base), together with considering the case wherein nanoparticles move freely in a pipe. In order to simulate the heat transfer, energy and radiative transfer equations are adjusted to the considered issue. NPs’ properties are determined following the nanofluidic theories, whereas absorption...
-
Kinetics of nitrogen removal processes in constructed wetlands
PublicationThe aim of this paper is to present a state-of-the-art review of the kinetics of nitrogen removal in constructed wetlands. Biological processes of nitrogen removal from wastewater can be described using equations and kinetic models. Hence, these kinetic models which have been developed and evaluated allow for predicting the removal of nitrogen in treatment wetlands. One of the most important, first order removal model, which is...
-
The behavioural model of graphene field-effect transistor
PublicationThe behavioural model of a graphene field-effect transistor (GFET) is proposed. In this approach the GFET element is treated as a “black box” with only external terminals available and without considering the physical phenomena directly. The presented circuit model was constructed to reflect steady-states characteristics taking also into account GFET capacitances. The authors’ model is defined by a relatively small number of equations...
-
The complexity of zero-visibility cops and robber
PublicationWe consider the zero-visibility cops & robber game restricted to trees. We produce a characterisation of trees of copnumber k and We consider the computational complexity of the zero-visibility Cops and Robber game. We present a heavily modified version of an already-existing algorithm that computes the zero-visibility copnumber of a tree in linear time and we show that the corresponding decision problem is NP-complete on a nontrivial...
-
Geometrically nonlinear analysis of shells - Benchmark problems for Autocad Robot Analysis Professional
PublicationThe aim of this work is to verify the suitability of commercial engineering software for geometrically nonlinear analysis of shells. This paper deals with the static, geometrically nonlinear analysis of shells made of an isotropic material. The Finite Element Method (FEM) is chosen to solve the problem. The results of the commercial software Autocad Robot Structural Analysis Professional (ARSAP) are compared with the litera-ture...
-
On mixing in the class of quadratic stochastic operators
PublicationWe study different types of limit behavior of quadratic stochastic operators acting on ℓ^1 (or ℓ^1_d) spaces in both strong and uniform topologies. The main motif of the paper is to express the uniform and strong asymptotic stability of the quadratic stochastic operator in terms of convergence of the associated (linear) nonhomogeneous Markov chain. We also examine which type of uniform convergence of iterates of the quadratic...
-
A method of nonlinearities of transformer no-load characteristic modelling
PublicationA way in which changes of the no-load characteristic are taken into account in the mathematical model of the transformer is presented. Changes of saturation within core of transformer are presented as a combined non-linear flux curve. Analysis of magnetization of the transformer core and simulation of no-load state for distribution transformer of 30 kVA power rating and 15.75/0.4 kV/kV (especially supplying VLV) transformation...
-
On the Bending of Multilayered Plates Considering Surface Viscoelasticity
PublicationWe discuss the bending resistance of multilayered plates taking into account surface/interfacial viscoelasticity. Within the linear surface viscoelasticity we introduce the surface/interfacial stresses linearly dependent on the history of surface strains. In order to underline the surface viscoelasticity contribution to the bending response we restrict ourselves to the elastic behaviour in the bulk. Using the correspondence principle...
-
A study on transverse shear correction for laminated sandwich panels
PublicationThe paper presents a study on an application of the First Order Shear Deformation Theory in a linear static analysis of elastic sandwich panels. A special attention has been given to the issue of the transverse shear correction. Two benchmark examples of sandwich plate problems with known reference solutions have been selected for a comparative analysis performed with own Finite Element codes. Interesting results allowed for drawing...
-
Review and comparison of smoothing algorithms for one-dimensional data noise reduction
PublicationThe paper considers the choice of parameters of smoothing algorithms for data denoising. The impact of the window size on smoothing accuracy was analyzed. The parameters of denoising filters were selected with respect to the meansquare error between the computed linear regression and the noisy signal. Finally, we have compared mean, median, SavitzkyGolay, Kalman and Gaussian filter algorithms for the data from the digital sensor....
-
Representation of magnetic hysteresis in a circuit model of a single-phase transformer
PublicationThe paper presents a mathematical model for the hysteresis phenomenon in a multi-winding single-phase core type transformer. The set of loop differential equations was developed for K-th winding transformer model where the flux linkages of each winding includes a flux common Φ to all windings as function of magneto motive force Θ of all windings. The first purpose of this paper is to determine a hysteresis nonlinearity involved...
-
Report for the Short Term Scientific Mission within COST Action FP1101: development of the in-field sensor for estimation of fracture toughness and shear strength by measuring cutting forces
PublicationKnowledge on the fracture properties of materials is essential to assure structural integrity and proper design of mechanical connections in timber constructions. Measurement of this property is, however, a very challenging task. The linear fracture mechanics is usually used for its assessment assisted with experimental data acquired by means of various techniques, usually of destructive nature. The cutting force is an energetic...
-
Determination of volatile organic compounds in water samples using membrane-solid phase microextraction (M-SPME) (headspace version)
PublicationThe results of a study on the use of membrane-solid phase microextraction (M-SPME) for sampling volatile organic compounds (VOCs) from the headspace above the liquid medium are presented. The sampled VOCs were subsequently quantified by gas chromatography (GC). Two systems were compared in this study, i.e. a novel two-phase sorption system (M-SPME), and a commercial fibre. Headspace sampling using SPME was optimized with respect...
-
Interfacial adhesion evaluation in (low-density polyethylene)/elastomer blends
PublicationLow-density polyethylene (LDPE) with different elastomers at a ratio of 50/50 wt% blends was prepared by using a co-rotating twin-screw extruder. Three kinds of elastomers were used: ground tire rubber (GTR), partially crosslinked butyl rubber (KalarVR ), and styrenebutadiene- rubber block copolymer (SBS; KratonVR ). For better characterization of interaction between polyethylene and elastomer, influence of the type of elastomer on...
-
Sensorless Predictive Multiscalar-Based Control of the Five-Phase IPMSM
PublicationThis article proposes multi-scalar variables based predictive control of sensorless multiphase interior permanent magnet synchronous machine. Estimated parameters from adaptive observers are used to implement the proposed control scheme. The control approach is divided into two parts: for the fundamental plane, torque and its dual quantity from the multi-scalar model are directly predicted by the controller, and torque density...
-
Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage
PublicationPurpose Thermal buckling of double-layered piezoelectric nanoplates has been analyzed by applying an external electric voltage on the nanoplates. The paper aims to discuss this issue. Design/methodology/approach Double-layered nanoplates are connected to each other by considering linear van der Waals forces. Nanoplates are placed on a polymer matrix. A comprehensive thermal stress function is used for investigating thermal buckling....
-
Effect of dendrimer-based interlayers for enzyme immobilization on a model electrochemical sensing system for glutamate
PublicationIn this paper, we discuss dendrimer usage in enzyme-based electrochemical biosensors, particularly with respect to biomolecule loading on the sensing surface. A novel approach to design bioactive layers with immobilized enzymes for electrochemical biosensors using the surface plasmon resonance (SPR) method in combination with electrochemical impedance spectroscopy was presented. The gold surface was modified with linear linkers...
-
Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublicationMixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based onthe three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.The...
-
Influence of soil–structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels
PublicationThe present research aims to study the influence of the soil-structure interaction (SSI) and existence or absence of masonry infill panels in steel frame structures on the earthquake-induced pounding-involved response of adjacent buildings. The study was further extended to compare the pounding-involved behavior versus the independent behavior of structures without collisions, focusing much on dynamic behavior of single frames....
-
Matrix solid-phase dispersion (MSPD) as simple and useful sample preparation technique for determination of polybrominated diphenyl ethers (PBDEs) in dust
PublicationIn the present study a novel analytical procedure for the determination of polybrominated diphenylethers in dust samples was developed.The main aim of the research was the selection of the optimum conditions of the matrix solid-phasedispersion before thefinal determination of polybrominated diphenyl ethers in dust samples. In order toassess the best usefulness of this technique, a favourable ratio of sample amount to the mass ofdispersing...
-
Numerical simulation of cold flow and combustion in a swirl stabilized combustor
PublicationA numerical simulation model was developed to investigate the cold flow and combustion using Ansys FLUENT 2021R1. The governing equations were solved using the pressure-based method, and pressure–velocity coupling was performed using the SIMPLE method. To model the turbulent process, the RSM model was used. Non-premixed model is chosen to solve the chemical kinetics between fuel and oxigen. Radiation heat transfer was calculated...
-
Multichannel self-optimizing active noise control scheme
PublicationThe problem of cancellation of a nonstationary sinusoidal interference, acting at the output of an unknown multivariable linear stable plant, is considered. The proposed cancellation scheme is a nontrivial extension of the SONIC (self-optimizing narrowband interference canceller) algorithm, developed earlier for single-input, single-output plants. In the important benchmark case - for disturbances with randomwalk-type amplitude...
-
Acoustic field and the entropy mode induced by it in a waveguide filled with some non-equilibrium gases
PublicationThe non-linear propagation of an acoustic beam in a rectangular waveguide is considered. The medium of sound propagation, is a gas where thermodynamically non-equilibrium processes take place: such as exothermic chemical reactions or excitation of vibrational degrees of a molecule’s freedom. The incident and reflected compounds of the acoustic field do not interact in the leading order in the case of periodic weakly nonlinear sound...
-
Determination of Local Corrosion Current from Individual Harmonic Components
PublicationHarmonic analysis has been used in corrosion measurements for several decades. During this period the method has been refined and developed. Nevertheless, the technique has not been applied to properties determination in local scale yet. This paper is focused on local corrosion current measurements based on harmonic analysis. For this purpose, a non-linear nature of electrode processes is used and measured in local scale applying...
-
Finite element simulation of cross shaped window panel supports
PublicationThe aim of the work is to verify suitability of cross-shaped window panel supports for mullion-transom wall systems. The Finite Element Method (FEM) is chosen to determine the behaviour of stainless steel elements under loading. The advanced non-linear numerical simulations are carried out using an implicit FEM software package MSC.Marc. This study is proposed to initiate the comprehensive investigation of mechanical properties...
-
Local mesh morphing technique for parametrized macromodels in the finite element method
PublicationThis paper presents a novel approach for enhancing the efficiency of the design process of microwave devices by means of the finite element method. It combines mesh morphing with local model order reduction (MOR) and yields parametrized macromodels that can be used to significantly reduce the number of variables in the FEM system of equations and acceleration of computer simulation. A projection basis for local reduction is generated...
-
Modelling a 6-dof manipulator using Matlab software
PublicationThis paper presents an alternative approach to modelling a revolute robot. The manipulator in question is Kuka KR 16-2. The main problem in robot modelling is a kinematic analysis. The revolute robot consist of six rotary joints (6-DOF) with base, shoulder, elbow and wirst. The kinematics problem is defined as a transformation from the cartesian space to the joint space. The Denavit- Hartenberg (D-H) model of representation was...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublicationIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Analog modelling in qualitative analysis of vibration propagation
PublicationThe theory of dynamic systems is usually used to model the real systems. The models are based on solving ordinary differential equations, partial or difference, which enable obtaining the relation between input signal and the system response (output signal). The analogy between those models and generalized dynamic systems or control systems can be practically used. Vibration propagation can be described in a similar way as the...
-
THE COMPOSITION MODULATION EFFECT IN GaInPAs SOLID SOLUTIONS AS A MANIFESTATION OF ENERGY RESONANCE AFTER MATERIAL'S SPINODAL DECOMPOSITION
PublicationThe Cahn-Hilliard model concepts are extended to describe the spinodal decomposition of Ga$_x$In$_{1-x}$P$_y$As$_{1-y}$ solid solutions grown on the InP substrate. The energy of elastic deformation of the thin layer of a solid solution was calculated on the assumption of its coherent conjugation with the massive InP substrate. The excess energy of component mixing in the solid phase was modeled in accordance with the simple solution...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
An inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface
PublicationPhysical aspects of inclined MHD nanofluid towards a stretching sheet embedded in a porous medium are visualized. Two types of nanoparticles are used named as copper and alumna dioxide with water as base fluid. Similarity transformations are used to convert the partial differential equations into the set of ordinary differential equation. Closed solutions are found to examine the velocity and the temperature profiles. It is examined...
-
Determination of the refractive index and wavelength‐dependent optical properties of few‐layer CrCl3 within the Fresnel formalism
PublicationBased on previous reports on the optical microscopy contrast of mechanically exfoliated few layer CrCl3 transferred on 285 nmand 270 nmSiO2 on Si(100), we focus on the experimental determination of an effective mean complex refractive index via a fitting analysis based on the Fresnel equations formalism. Accordingly, the layer and wavelength-dependent absorbance and reflectance are calculated. Layer and wavelength-dependent optical...
-
Flexomagneticity in Functionally Graded Nanostructures
PublicationFunctionally graded structures have shown the perspective of materials in a higher efficient and consistent manner. This study reports a short investigation by concentrating on the flexomagnetic response of a functionally graded piezomagnetic nano-actuator, keeping in mind that the converse magnetic effect is only taken into evaluation. The rule of mixture assuming exponential composition of properties along with the thickness...
-
Multifrequency self-optimizing narrowband interference canceller
PublicationThe problem of cancellation of a nonstationary sinusoidal interference, acting at the output of a linear stable plant, is considered. It is assumed that disturbance is a multifrequency narrowband signal, and that system output is contaminated with wideband noise. It is not assumed that the reference signal is available. Two disturbance cancelling schemes are proposed, one for disturbances with unrelated frequency components, and...