Filters
total: 275
filtered: 270
-
Catalog
Chosen catalog filters
Search results for: chemical activation
-
Exploring synergistic effects in physical-chemical activation of Acorus calamus for water treatment solutions
PublicationThe research proposed a novel method of obtaining sorption material from readily available Acorus calamus bio- mass through a combination of physical and chemical activation processes. The material with the highest specific surface area (1652 m2 g−1) was obtained by physical activation with CO2, followed by chemical activation with KOH. Reversing the order of activation methods resulted in a lower specific surface area (1014 m2...
-
Biomass-based activated carbons produced by chemical activation with H3PO4 as catalysts for the transformation of α-pinene to high-added chemicals
Publication -
Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for PotentialWastewater Adsorption
PublicationPyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The eect...
-
Chestnut-Derived Activated Carbon as a Prospective Material for Energy Storage
PublicationIn this work, we present the preparation and characterization of biomass-derived activatedcarbon (AC) in view of its application as electrode material for electrochemical capacitors. Porouscarbons are prepared by pyrolysis of chestnut seeds and subsequent activation of the obtainedbiochar. We investigate here two activation methods, namely, physical by CO2and chemical usingKOH. Morphology, structure and specific surface area (SSA)...
-
Investigation of the Efficiency of a Dual-Fuel Gas Turbine Combustion Chamber with a Plasma‒Chemical Element
PublicationThe study is devoted to the possibility of increasing the efficiency of the working process in dual-fuel combustion chambers of gas turbine engines for FPSO vessels. For the first time, it is proposed to use the advantages of plasma‒chemical intensification of the combustion of hydrocarbon fuels in the dual-fuel combustion chambers, which can simultaneously operate on gaseous and liquid fuels. A design scheme of a combustion chamber...
-
Conversion of waste biomass into activated carbon and evaluation of environmental consequences using life cycle assessment
PublicationIn this article, activated carbon was produced from Lantana camara and olive trees by H3PO4 chemical activation. The prepared activated carbons were analyzed by characterizations such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. H3PO4 is used as an activator agent to create an abundant pore...
-
Activation Energy and Inclination Magnetic Dipole Influences on Carreau Nanofluid Flowing via Cylindrical Channel with an Infinite Shearing Rate
PublicationThe infinite shear viscosity model of Carreau fluid characterizes the attitude of fluid flow at a very high/very low shear rate. This model has the capacity for interpretation of fluid at both extreme levels, and an inclined magnetic dipole in fluid mechanics has its valuable applications such as magnetic drug engineering, cold treatments to destroy tumors, drug targeting, bio preservation, cryosurgery, astrophysics, reaction kinetics,...
-
Thermally activated natural chalcopyrite for Fenton-like degradation of Rhodamine B: Catalyst characterization, performance evaluation, and catalytic mechanism
PublicationIn this work, catalytic activity of natural chalcopyrite (CuFeS2) was improved by thermal activation. The modified chalcopyrite was used as efficient catalyst for degradation of organic dye Rhodamine B (RhB) through advanced oxidation process (AOP). Effects of catalyst dosage, H2O2 concentration, reaction temperature, solution pH, anions, and natural organic matter on the degradation efficiency of RhB were investigated. This study...
-
Non-ergodic fragmentation upon collision-induced activation of cysteine–water cluster cations
PublicationCysteine–water cluster cations Cys(H2O)3,6 + and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collisioninduced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies...
-
The Sonocatalytic Activation of Persulfates on Iron Nanoparticle Decorated Zeolite for the Degradation of 1,4-Dioxane in Aquatic Environments
PublicationIn the chemical industry, 1,4-diethylene dioxide, commonly called dioxane, is widely used as a solvent as well as a stabilizing agent for chlorinated solvents. Due to its high miscibility, dioxane is a ubiquitous water contaminant. This study investigates the effectiveness of catalyst- and ultrasound (US)-assisted persulfate (PS) activation with regard to degrading dioxane. As a first step, a composite catalyst was prepared using...
-
Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach
PublicationCurrently, the increasing importance of the bio-based chemical compounds development is visible in the polymer chemistry, chemical engineering and materials science. It is well-known that the various purity level and different contaminants characterize petrochemical-based compounds compared to their biobased counterparts. Therefore, it is necessary to find out the contaminants impact on the bio-based monomers synthesis. One of...
-
Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in Electroanalysis
Publication3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic...
-
Polyurethane Glycerolysate as a Modifier of the Properties of Natural Rubber Mixtures and Vulcanizates
PublicationChemical recycling of polyurethanes can be realized in several different ways, but the most important methods are glycolysis and glycerolysis. Both methods permit recovery of polyols (when the process is realized with the mass excess of depolymerizing agent) or substitutes of polyols, which contain urethane moieties in the main chains and terminate mainly in hydroxyl groups (when the process is realized with the mass excess of...
-
3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation
PublicationCobalt-based catalysts with high stability and facile recovery for heterogeneous peroxymonosulfate (PMS) activation are still rather sparse and therefore highly desirable. Herein, 3D mesoporous α-Co(OH)2 nanosheets was created on robust nickel foam (NF) via facile electrodeposition approach at 6 mA/cm2 for only 400 s. Almost complete removal of phenol can be achieved within 7 min with a degradation rate of 0.39 min−1, 2 times higher...
-
The Ellenbogen’s “Matter as Software” Concept for Quantum Computer Implementation: IV. The X@C60 Molecular Building Blocks (MBBs) and Computing System Lifetime Estimation
PublicationThe problem of approximate lifetimes of individual X@C60 MBBs and tip-based nanofabricated quantum computing device systems is discussed under the conservative assumption of single-point failure. A single chemical transformation of the C60 cage into high-energy opened o-C60 isomer which forms the communication canal for the low energy transfer of an X atom from X@C60 MBB to the outside environment was studied. According to the...
-
Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation
PublicationHeterogeneous metal catalysts have attracted considerable interest in advanced oxidation processes (AOPs) for wastewater treatment by activating peroxymonosulfate (PMS). However, it remains challenging to the rational design of efficient reaction pathway for high-performance contaminants removal by regulating the inherent structure of metal oxides. Herein, a high-energy ball milling method was employed to modulate the electronic...
-
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
Kinetics of cross-linking processes of fast-curing polyurethane system
PublicationThis work focuses on the application of thermal analysis and kinetics investigations to analyze chemical processes during cross-linking of the complex fast-curing polyurethane system. Non-isothermal Differential Scanning Calorimetry (DSC) measurements were performed for both stoichiometric mixtures of polyol and isocyanate component and for mixture with large isocyanate excess. Isoconversional methods were used to calculate initial...
-
H2AX phosphorylation, its role in DNA damage response and cancer therapy
PublicationDouble-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR), a complex molecular mechanism developed to detect...
-
Charge Transport in High-Entropy Oxides
PublicationThis work presents the results of research on the transport properties of the high-entropy BaZr1/8Hf1/8Sn1/8Ti1/8Y1/8In1/8Sm1/8Yb1/8O3–x perovskite oxide with special focus on proton transport. The presented study is part of broader work in which we focus on multiple different chemical compositions with the cation number varying from 5 up to 12 (in B-sublattice). The presence of proton defects is analyzed with thermogravimetry,...
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
Vitamin B9 as a new eco-friendly corrosion inhibitor for copper in 3.5% NaCl solution
PublicationFolic acid salt (sodium folate) was studied as an eco-friendly and non-toxic copper corrosion inhibitor in 3.5% NaCl solution. Electrochemical impedance spectroscopy, polarization resistance and weight-loss measurements show that the inhibitor efficiency increases with concentration (the highest value- approx. 96% was reported for the solution containing 16 mM sodium folate after 24 h). EIS data and Tafel plots indicate that sodium...
-
ACTIVATED BIOCHAR AS AN ADSORBENT OF ORGANIC POLLUTANTS FOR WATER AND WASTEWATER TREATMENT
PublicationThe use of biomass, especially waste biomass, as an alternative energy source is a very important issue today. Pyrolysis is a process of thermal degradation of raw material and one of its products is biochar. This product is mainly distinguished by its high carbon content, and by improving its quality through activation, it can be more widely used. Activated biocarbon has a strongly developed surface and porous structure, and as...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublicationThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
Detoxification of the tricyclic antidepressant opipramol and its analog – IS-noh by UGT enzymes before and after activation by phase I enzymes in rat liver microsomes
PublicationThe present studies were carried out to evaluate the simultaneous one-pot metabolism of opipramol (IS-opi) and analog (IS-noh) by phase I and phase II enzymes present in rat liver microsomes (RLM) as an alternative to separate testing with recombinant enzymes. This approach allows for more time-saving and cost-effective screening of the metabolism of newly discovered drugs. We also considered that the lack of results for phase...
-
Enhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applications
PublicationAn extraordinary charge transfer kinetics and chemical stability make a boron-doped diamond (BDD) a prom- ising material for electrochemical applications including wastewater treatment. Yet, with flat geometrical sur- faces its scaling options are limited. In this study, the reticulated Vitreous Carbon (RVC) served as a substrate for boron-doped diamondized nanocarbons (BDNC) film growth resulting with complex heterogeneity carbon structures...
-
Phosphinoborinium cation: a synthon for cationic B-P bond systems
PublicationHerein, we report access to phosphinoborinium cations via heterolytic cleavage of the boron-bromide bond in bromophosphinoborane. The product of the reaction was isolated as a dimeric dication possessing a planar P2B2 core. Activation of C-H and C-P bonds in the dication led to formation of the borinium-phosphaborene adduct. Reactivity studies revealed that title cation exhibits ambiphilic properties and intramolecular frustrated...
-
The electronic structure of p-xylylene and its reactivity with vinyl molecules
PublicationThe electronic states of p-xylylene molecule were described at the multi-configurational CASSCF/MRMP2 level of theory. The closed-shell singlet state representing the quinoidal p-xylylene molecule was pre-dicted to be the ground electronic state whereas the triplet (benzoidal) and the singlet open-shell states were found to be much higher in energy (by 159 and 423 kJ/mol, respectively, as found at the CASSCF(8,8)/6-31+G(d) level)....
-
Persulfate activation by organic compounds: advancements and challenges
Publication -
Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks
PublicationThis paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected...
-
Laboratory station for research of the innovative dry method of exhaust gas desulfurization for an engine powered with residual fuel
PublicationContemporary methods of exhaust gas desulfurization in marine engines are all expensive methods (4-5 million euro). This is, among other reasons, due to the limited market audience, but primarily due to the monop-olized position of manufacturers offering fabrication and assembly of this type of marine ship installations. Proposed as part of a research project financed by the Regional Fund for Environmental Protection and Maritime...
-
Nanostructure and dielectric behavior of vanadate glasses containing BaTiO3
PublicationThe ac and dc electrical conductivity of barium titanate doped bismuth-vanadate as-quenched and heat-treated materials was measured in the frequency range from 1 mHz to 1 MHz and in the temperature range from 153 K to 423 K with the impedance spectroscopy method. The microstructure was investigated by means of XRD, scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal microscopy. The obtained results showed...
-
Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte
PublicationThe electrochemical performance of Co3O4/CeO2 mixed oxide materials as electrodes, when exposed to H2S/H2O atmospheres, was examined employing a proton conducting symmetrical cell, with BaZr0.7Ce0.2Y0.1O3 (BZCY72) as the solid electrolyte. The impact of temperature (700–850 °C) and H2S concentration (0–1 v/v%) in steam-rich atmospheres (90 v/v% H2O) on the overall cell performance was thoroughly assessed by means of electrochemical...
-
Magnetically recyclable TiO2/MXene/MnFe2O4 photocatalyst for enhanced peroxymonosulphate-assisted photocatalytic degradation of carbamazepine and ibuprofen under simulated solar light
PublicationIn this study, a novel TiO2/Ti3C2/MnFe2O4 magnetic photocatalyst with dual properties, enabling (i) improved photocatalytic degradation with PMS activation under simulated solar light and (ii) magnetic separation after the degradation process in an external magnetic field was developed and applied for the efficient photodegradation pharmaceutically active compounds (PhACs) frequently present in wastewater and surface waters worldwide. MXene...
-
Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents
PublicationIn this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1:4, 1:6 and 1:8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence...
-
Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition
PublicationWe report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition....
-
Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents
PublicationIn this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1: 4, 1: 6 and 1: 8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence...
-
Conductive printable electrodes tuned by boron-doped nanodiamond foil additives for nitroexplosive detection
PublicationAn efficient additive manufacturing-based composite material fabrication for electrochemical applications is reported. The composite is composed of commercially available graphene-doped polylactide acid (G-PLA) 3D printouts and surface- functionalized with nanocrystalline boron-doped diamond foil (NDF) additives. The NDFs were synthesized on a tantalum substrate and transferred to the 3D-printout surface at 200 °C. No other electrode...
-
Physicochemical Properties and Application of Silica-Doped Biochar Composites as Efficient Sorbents of Copper from Tap Water
PublicationThis article concerns research on new sorption materials based on silica-doped activated carbon. A two-stage synthesis involved pyrolysis of plant material impregnated in a water glass solution , followed by hydrothermal activation of the pyrolysate in KOH solution. The resulting composite can be used as a sorbent in drinking water filters. The proposed method of synthesis enables the design of materials with a surface area...
-
Cathodically activated Au/TiO2 nanocomposite synthesized by a new facile solvothermal method: An efficient electrocatalyst with Pt-like activity for hydrogen generation
PublicationWe report here a facile, template-free and one-step solvothermal approach for the synthesis of high-temperature stable gold/titania nanocomposite (NCs), providing a new, simple, quick and inexpensive wet-chemical route. Our approach is based on the assembly of gold salt and titanium butoxide in dimethyl sulfoxide (DMSO). Also, we present here, for the first time, a cathodically activated Au/TiO2 catalyst with Pt/C activity for...
-
Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
PublicationThe densities of binary liquid mixtures of dimethyl sulfoxide and gamma-butyrolactone at (293.15, 298.15, 303.15 and 313.15) K and viscosity at T=298.15 K have been measured at atmospheric pressure over theentire range of concentration. From these data the excess molar volumes VE at (293.15, 298.15, 303.15 and 313.15) K and the viscosity deviation, the excess entropy, and the excess Gibbs energy of activation for viscous flow at...
-
Analytical fluctuation enhanced sensing by resistive gas sensors
PublicationResistance fluctuations across polarised resistive gas sensors were studied in detail to evaluate sensor working conditions for detecting methane and ammonia at various concentrations. The 1/f noise component typically dominates other noise sources up to a few kHz and can be utilised to improve gas selectivity when compared with measurements of the sensor DC resistance. The Arrhenius plot was created and the activation energy for...
-
Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method
PublicationThe application of thermoplastic polyurethanes (TPU) is becoming more and more extensive, and the decreasing of used petrochemical monomers and reduction of energy for the polymerization and processing processes is getting increasingly important. In this paper, we confirmed the positive influence of high bio-based monomers contents (by replacing petrochemical polyol and glycol by bio-based counterparts) on processing and properties...
-
Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies
PublicationThe purpose of this work focuses on the production and investigations of a new composite material as alternative low-cost adsorbent for the removal of crystal violet (CV) dye from waste solution. The production method was performed by in-situ thermal activation technology via extrusion process of polymer wastes containing tire rubber (50 wt%) and polyurethane foam (50 wt%) using single-screw extruder under processing temperature...
-
Peroxymonosulfate-assisted photocatalytic degradation of artificial sweeteners in water
PublicationIn the present study, peroxymonosulfate (PMS) activation was proposed for efficient photocatalytic degradation of aspartame, acesulfame, saccharin, and cyclamate - artificial sweeteners frequently present in wastewaters and surface waters worldwide. The TiO2 nanosheets with exposed {0 0 1} facets were synthesised using the fluorine-free lyophilisation technique as a green concept for the synthesis and used for the photodegradation...
-
Bio‑derived polyurethanes obtained by non‑isocyanate route using polyol‑based bis(cyclic carbonate)s—studies on thermal decomposition behavior
PublicationNon-isocyanate polyurethanes (NIPUs) constitute one of the most prospective groups of eco-friendly materials based on their phosgene-free synthesis pathway. Moreover, one of the steps of their obtaining includes the use of carbon dioxide (CO 2 ), which allows for the promotion of the development of carbon dioxide capture and storage technologies. In this work, non- isocyanate polyurethanes were obtained via three-step synthesis...
-
Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics
PublicationA polyurethane (PU)-based powder coating reinforced with vinyltrimethoxysilane (VTMS)-functionalized ZrO2 nanoparticles (V-ZrO2) for thermal stability was developed. Chemical structure, microstructure and thermal degradation kinetics of the prepared coatings were investigated. The peak of aliphatic C–H vibrating bond in the Fourier transform infrared (FTIR) spectrum of V-ZrO2 was a signature of VTMS attachment. Scanning electron...
-
The extended version of restriction analysis approach for the examination of the ability of low-molecular-weight compounds to modify DNA in a cell-free system
PublicationOne of the primary requirements in toxicology is the assessment of ability of chemicals to induce DNA covalent modification. There are several well-established methods used for this purpose such as 32P-Postlabeling or HPLC-MS. However, all of these approaches have difficult to overcome limitations, which prevents their use in genotoxin screening. Here, we describe the simple protocol exploiting specificity of restriction enzymes...
-
Gas selectivity enhancement by sampling-and-hold method in resistive gas sensors
PublicationCommercial resistive gas sensors exhibit various sensitivity to numerous gases when working at different elevated temperatures. That effect is due to a change in velocity of adsorption and desorption processes which can be modulated by temperature. Thus, to reach better selectivity of gas detection, we propose to apply a known method (called the sampling-and-hold method) of cooling down the gas sensor in the presence of the investigated...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....