Search results for: COMPOSITE STRUCTURES
-
SrCe0.9In0.1O3-δ-based reversible symmetrical Protonic Ceramic Cell
PublicationIn-doped SrCe0.9In0.1O3-δ (SCI) perovskite-type oxide is utilized as the solid electrolyte, as well as a component, together with SrFe0.75Mo0.25O3-δ (SFM) compound, in the composite-type electrodes to construct symmetrical Protonic Ceramic Fuel Cells (PCFC). With good mutual stability of SCI and SFM at high temperatures in water vapor-containing reducing and oxidizing conditions, as well as sufficient ionic conductivity with high...
-
Edgewise Compressive Behavior of Composite Structural Insulated Panels with Magnesium Oxide Board Facings
PublicationEdgewise compression response of a composite structural insulated panel (CSIP) with magnesium oxide board facings was investigated. The discussed CSIP is a novel multifunctional sandwich panel introduced to the housing industry as a part of the wall, floor, and roof assemblies. The study aims to propose a computational tool for reliable prediction of failure modes of CSIPs subjected to concentric and eccentric axial loads. An advanced...
-
Mohammad Malikan dr inż.
PeopleMohammad Malikan studied Ph.D. at the Department of Mechanics of Materials and Structures at the Gdańsk University of Technology. He was the first person who graduated in the new form of the doctoral education system of Poland (Doctoral School). He has worked as a mechanical engineer and designer for several years in CAD/CAE fields in various industries, such as feed production lines, machinery, elevator, oil, etc. His main research...
-
Experimental and Numerical Investigations of the Effect of Curing Conditions on the Temperature Rise of Concrete
PublicationThis paper presents experimental and numerical studies investigating the impact of three curing conditions on temperature evolution in concrete cubes. The tests were performed on samples of the same volume (3.375 dm3) under different curing conditions: room temperature, insulation boxes, and adiabatic calorimeter. Various cements (Portland cement, Portland composite cement, and blast furnace slag cement) and aggregates (gravel...
-
Application of chemometric modeling for ionic liquid-based ultrasonic-assisted dispersive liquid-liquid microextraction: Analysis of fosetyl-aluminum in fruit and vegetable samples
PublicationThis manuscript presents a new method for selective extraction and determination of fosetyl-aluminum in fruits and vegetable samples based on ultrasonic-assisted dispersive liquid-liquid microextraction method using ionic liquids (IL-UA-DLLME). A UV-Visible spectrophotometer was used for detection and quantification. Plants used for sample collection were grown under controlled conditions in a greenhouse. Central composite design...
-
Analysis of Modal Parameters Using a Statistical Approach for Condition Monitoring of the Wind Turbine Blade
PublicationThe primary objective of the presented paper is the numerical and experimental investigation related to developing a useful diagnostic method, which can be used for determining the site and size of damage in laminated shells of wind turbine blades. The described detection technique is based on the analysis of low frequencies bending vibrations mode shapes of rotor blades. The authors used the commonly applied statistics methods...
-
Preparation and Characterization of Films Based on Disintegrated Bacterial Cellulose and Montmorillonite
PublicationThe food packaging materials from natural polymers including polysaccharides offer an ecologically important alternative to commonly used synthetic, non-biodegradable counterparts. The purpose of this work was to modify of bacterial cellulose (BC) leading to the improvement of its functional properties in terms of use as a food packaging material. Effects of disintegration of BC and addition of montmorillonite (MMT) on its water...
-
Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber
PublicationThe utilization of post-consumer car tires is an essential issue from an ecological andeconomic point of view. One of the simplest and the least harmful methods is their material recyclingresulting in ground tire rubber (GTR), which can be further applied as fillers for polymer-basedcomposites. Nevertheless, insufficient interfacial interactions implicate the necessity of GTR modi-fication before introduction into polymer matrices....
-
Cyclic Behavior of Masonry Shear Walls Retrofitted with Engineered Cementitious Composite and Pseudoelastic Shape Memory Alloy
PublicationThe behavior of masonry shear walls reinforced with pseudoelastic Ni–Ti shape memory alloy (SMA) strips and engineered cementitious composite (ECC) sheets is the main focus of this paper. The walls were subjected to quasi-static cyclic in-plane loads and evaluated by using Abaqus. Eight cases of strengthening of masonry walls were investigated. Three masonry walls were strengthened with different thicknesses of ECC sheets using...
-
Load capacity and serviceability conditions for footbridges made of fibre-reinforced polymer laminates = Warunki nośności i użytkowalności w odniesieniu do kładek z laminatów polimerowych
PublicationThe contribution is focused on derivation of the Ultimate Limit State (ULS) and Serviceability Limit State (SLS) design criteria for footbridges built of fibre-reinforced polymer matrix (FRP) laminates. The ULS design criterion is based on the design guidelines for above-ground, pressure, FRP composite tanks and the Tsai-Wu failure criterion, which is used to predict the onset of FRP laminates damage. The SLS criterion is based...
-
The Application of Granulated Expanded Glass Aggregate with Cement Grout as an Alternative Solution for Sub-Grade and Frost-Protection Sub-Base Layer in Road Construction
PublicationThe purpose of the research was to assess the possibility of using granulated expanded glass aggregate (GEGA) with cement grout as a replacement of a sub-grade and frost-protection layer, made of natural fine aggregates (NATU), stabilized with a hydraulic binder. Instead of traditional parts of the road construction, such as the sub-grade and frost-protection layer with the application of fine aggregate, stabilized with cement,...
-
Effects of electrophoretic deposition times and nanotubular oxide surfaces on properties of the nanohydroxyapatite/nanocopper coating on the Ti13Zr13Nb alloy
PublicationLoad-bearing implants are developed with a particular emphasis placed on an application of ceramic hydroxyapatite coatings in order, to enhance the bioactivity of titanium implants and to shorten the healing time. Therefore, thin, fully crystalline coatings that are, highly adhesive, hydrophilic and demonstrating antibacterial properties are ly looked for. The aim of this research was to develop and characterize the properties...
-
Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach
PublicationThe developed process is based on alternative, green and cheap solvents for efficient desulfurization of fuels. Several deep eutectic solvents (DESs) were successfully synthesized and studied as extraction solvents for desulfurization of model fuel containing thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT). The most important extraction parameters (i.e. kind of DES, DES: fuel volume ratio, hydrogen bond acceptor:...
-
Tailoring optical constants of few-layer black phosphorus coatings: Spectroscopic ellipsometry approach supported by ab-initio simulation
Publication2D black phosphorus (BP) has attracted extensive attention as an anisotropic platform for novel optoelectronic and polarizing optics applications. Insight into the factors that tune the optical and polarizing properties of 2D BP reveals their essential influence on BP-based photonic and optoelectronic devices. In this work, studies of the optical constants of few-layer black phosphorus coatings are studied and discussed, with particular...
-
Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant
PublicationEpoxy nanocomposites containing halloysite nanotubes (HNTs) were developed and their low-concentration thresholds for thermal stability and flame retardancy were compared with that of epoxy system containing expandable graphite (EG), as a reference with superior flame retardancy. The effects of HNTs and EG on the peak of Heat Release Rate (pHRR), Total Heat Release (THR), and Time-To-Ignition (TTI) of the prepared samples were...
-
Ultrasound assisted dispersive solid phase microextraction using polystyrene-polyoleic acid graft copolymer for determination of Sb(III) in various bottled beverages by HGAAS
PublicationA new polyoleic acid-polystyrene (PoleS) block/graft copolymer was synthesized and applied as adsorbent for ultrasound assisted dispersive solid phase microextraction (UA-DSPME) of Sb(III) in different bottled beverages and analysis using hydride generation atomic absorption spectrometry (HGAAS). Adsorption capacity of the PoleS was 150 mg g−1. Several sample preparation parameters such as sorbent amount, solvent type, pH, sample...
-
Wear Resistance Enhancement of Al6061 Alloy Surface Layer by Laser Dispersed Carbide Powders
PublicationIn this paper, results of the experimental study on improving wear resistance in sliding friction of Al-based alloy are presented. The technique used involves the formation of a metal matrix composite (MMC) in the alloy surface layer by laser dispersion of carbide powders such as WC, TiC and SiC. For WC and TiC MMC surface coatings fabricated under conditions typical for most of the technologically relevant solid-state lasers (wavelength...
-
Recycling of Waste Rubber by the Manufacturing of Foamed Polyurethane-Based Composites—Current State and Perspectives
PublicationWorn car tires are disruptive waste, and the issue of their management is crucial for the natural environment. In many countries, the primary method of end-of-life tires utilization is energy recovery. However, more effective and beneficial for the environment is material recycling. Using them for the production of polymer-rubber composites seems to be an auspicious direction of research. Incorporation of ground tire rubber into...
-
Concrete temperature measurements of cubic specimens cured under isothermal and semi-adiabatic conditions
Open Research DataThe DataSet contains temperature measurements of concrete cubes (150 x 150 x 150 mm) cured under isothermal and semi-adiabatic conditions. The specimens were moulded from six types of concrete mixtures produced in the laboratory conditions. Mix #1: Portland cement CEM I 42.5R and gravel aggregate, mix #2: CEM I 42.5R and basalt aggregate, mix#3: Portland-composite...
-
Development of an orbital shaker-assisted fatty acid-based switchable solvent microextraction procedure for rapid and green extraction of amoxicillin from complex matrices: Central composite design
PublicationIn this study, a cheap, fast and simple orbital shaker-assisted fatty acid-based switchable solvent microextraction (OS-FASS-ME) procedure was developed for the extraction of amoxicillin (AMOX) in dairy products, pharmaceutical samples and wastewater prior to its spectrophotometric analysis. Fatty acid-based switchable solvents were investigated for extracting AMOX. The key factors of the OS-FASS-ME procedure were optimized using...
-
Investigation of use of hydrophilic/hydrophobic NADESs for selective extraction of As(III) and Sb(III) ions in vegetable samples: Air assisted liquid phase microextraction and chemometric optimization
PublicationIn this paper, a green, cost-effective sample preparation method based on air assisted liquid phase microextraction (AA-LPME) was developed for the simultaneous extraction of As(III) and Sb(III) ions from vegetable samples using hydrophilic/hydrophobic natural deep eutectic solvents (NADESs). Central composite design was used for the optimization of extraction factors including NADES volume, extraction cycle, pH, and curcumin concentration....
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation
PublicationIn the present study, ultrasound (US) was coupled with an electrochemical process (ECP) consisting of a novel cathode of carbon cloth (CC)-carbon black (CB) as the nano-composite air-dispersion cathode (NADC) for the degradation of paracetamol (APAP) in an aquatic medium. The NADC favored in situ production of H2O2 by the cathodic reduction. The implementation of iron sacrificial anode instead of dimensionally stable anodes resulted...
-
Injectable bone cement based on magnesium potassium phosphate and cross-linked alginate hydrogel designed for minimally invasive orthopedic procedures
PublicationBone cement based on magnesium phosphate has extremely favorable properties for its application as a bioactive bone substitute. However, further improvement is still expected due to difficult injectability and high brittleness. This paper reported the preparation of novel biocomposite cement, classified as dual-setting, obtained through ceramic hydration reaction and polymer cross-linking. Cement was composed of magnesium potassium...
-
Surface sliding in human abdominal wall numerical models: Comparison of single-surface and multi-surface composites
PublicationDetermining mechanical properties of abdominal soft tissues requires a coupled experimental-numerical study, but first an appropriate numerical model needs to be built. Precise modeling of human abdominal wall mechanics is difficult because of its complicated multi-layer composition and large variation between specimens. There are several approaches concerning simplification of numerical models, but it is unclear how far one could...
-
Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose
PublicationIn our study, we focused on obtaining bio-polyurethane composites using bio-components such as bio glycol, modified natural oil-based polyol, and microcrystalline cellulose (MCC). The pre-polymer method was used to prepare the bio polyurethane matrix. Prepolymer was synthesized using 4,4’-diphenylmethane diisocyanate (MDI) and a polyol mixture containing 50 wt.% of commercial polyether and 50 wt.% of hydroxylated soybean oil (H3)....
-
Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water
PublicationIn the present study treatability of persistent organic compounds from the flow back water after hydrauling fracturing was investigated. The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhance the separation and recoverable property of nanosized TiO2 photocatalyst. Fe3O4/ TiO2 and Fe3O4@SiO2/TiO2 nanocomposites were prepared by heteroagglomeration. The photocatalysts’ characteristics by X-ray diffractometry...
-
Influence of Storage Time and Temperature on the Toxicity, Endocrine Potential, and Migration of Epoxy Resin Precursors in Extracts of Food Packaging Materials
PublicationThe aim of the present study was to establish a standard methodology for the extraction of epoxy resin precursors from several types of food packages (cans, multi-layered composite material, and cups) with selected simulation media (distilled water, 5% ethanol, 3% dimethyl sulfoxide, 5% acetic acid, artificial saliva) at different extraction times and temperatures (factors). Biological analyses were conducted to determine the acute...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers
PublicationTo provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter...
-
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
PublicationMXenes, a novel large family of 2D transition metal carbides, carbonitrides and nitrides are currently a “hot topic” in science due to their several fascinating physical and chemical properties. It follows from a rich diversity of their elemental compositions and chemical functionalities. MXenes can form composites with many substances, including polymers or metal oxides, which allows to effective “tune” MXene characteristics to...
-
Extractive detoxification of hydrolysates with simultaneous formation of deep eutectic solvents
PublicationThe hydrolysis of lignocellulosic biomass results in the production of so-called fermentation inhibitors, which reduce the efficiency of biohydrogen production. To increase the efficiency of hydrogen production, inhibitors should be removed from aqueous hydrolysate solutions before the fermentation process. This paper presents a new approach to the detoxification of hydrolysates with the simultaneous formation of in-situ deep eutectic...
-
Polyurethane-wood composites (PU-WC) as a method of wood waste management
PublicationIn recent years, due to the progressive environmental degradation and increase of environmental awareness, the sustainability of production systems in wood processing, the wood industry, and wood waste management is a crucial issue for European industry and society. Consequently, the problem of generating wood-like waste and the associated risks has become an increasingly noticeable challenge for science. Although various methods...
-
Combination of homogeneous liquid–liquid extraction and vortex assisted dispersive liquid–liquid microextraction for the extraction and analysis of ochratoxin A in dried fruit samples: Central composite design optimization
PublicationThis paper presents a new analytical procedure based on combination of homogeneous liquid–liquid extraction (HLLE) and vortex-assisted dispersive liquid–liquid microextraction (VA-DLLME) for the accurate and reliable determination of ochratoxin A (OTA) in dried fruit samples. To enable selective extraction of the OTA, six hydrophobic deep eutectic solvents (hDESs) were prepared and tested as extraction solvents. Optimization of...
-
Comparative Analysis of Carbon, Ecological, and Water Footprints of Polypropylene-Based Composites Filled with Cotton, Jute and Kenaf Fibers
PublicationComposites containing natural fibers are considered environmentally friendly materials which is related to the reduced use of fossil fuels and the emission of carbon dioxide compared to petroleum-based polymers. Nevertheless, a complete evaluation of their environmental impact requires a broader view. This paper presents a carbon, ecological, and water footprints assessment of polypropylene-based composites filled with cotton,...
-
Ultrasound-assisted wet-impregnation of Ag–Co nanoparticles on cellulose nanofibers: Enhanced catalytic hydrogenation of 4-nitrophenol
PublicationIn this study, a novel nanocomposite of bimetallic Ag–Co nanoparticles supported on cellulose nanofibers (CNFs) was synthesised using the ultrasound-assisted wet-impregnation method for catalytic applications. CNFs were prepared from cellulose acetate using the electrospinning technique. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the successful synthesis of CNFs. Further, scanning electron microscopy (SEM)...
-
Innovative investment funds and stability of financial systems: Nonparametric study of exchange-traded funds in Europe
PublicationThe main aim of the paper is investigation of the potential contribution of exchange-trade funds (ETFs) to the instability of the European financial systems. The paper begins with presentation of the key theoretical concepts with regard to ETFs and financial stability. We discuss the key attributes of ETFs as the innovative category of investment funds, their hypothesized impact on the financial stability as well as briefly describe...
-
Measurements of the heat of hydration released by concrete specimens cured under adiabatic conditions
Open Research DataThe DataSet contains measurements of heat of hydartion of concrete cubes (150 x 150 x 150 mm) cured under adiabatic conditions. The specimens were moulded from six types of concrete mixtures produced in the laboratory conditions. Mix #1: Portland cement CEM I 42.5R and gravel aggregate, mix #2: CEM I 42.5R and basalt aggregate, mix#3: Portland-composite...
-
The generalized Suzuki model of the multipath fading channel
Open Research DataThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The generalized Suzuki fading envelope is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Silver nanoparticles incorporated with superior silica nanoparticles-based rice straw to maximize biogas production from anaerobic digestion of landfill leachate
PublicationTreating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron...
-
Biomass-Derived Nitrogen Functionalized Carbon Nanodots and Their Anti-Biofouling Properties
PublicationThe prevalence of the antibiotic resistant bacteria remains a global issue. Cheap, sustainable and multifunctional antibacterial membranes are at the forefront of filtrating materials capable of treating multiple flow streams, such as water cleansing treatments. Carbon nanomaterials are particularly interesting objects shown to enhance antibacterial properties of composite materials. In this article, amino-functionalized, photoluminescent...
-
From Bioink to Tissue: Exploring Chitosan-Agarose Composite in the Context of Printability and Cellular Behaviour
PublicationThis study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan–agarose composites in a unidirectional bench press...
-
Experimental and analytical thermal study of PTFE composite sliding against high carbon steel as a function of the surface roughness, sliding velocity and applied load
PublicationThis study investigates the contact temperatures caused by frictional heating of sliding parallel pairs. In this case the materials studied are a PTFE composite in contact with a high carbon steel plate. These materials are commonly used for industrial applications, in particular as the main contacting components within a scroll expander system. The expected contact temperature values are important to be quantified in order to...
-
Polyurethane/ground tire rubber composite foams based on polyglycerol: processing, mechanical and thermal properties
PublicationDuring the synthesis of rigid polyurethane foams, petrochemical polyol was substituted with polyglycerol, the product of thermo-catalytic polycondensation of waste glycerol, resulting from biodiesel production. Two types of ground tire rubbers, untreated and thermo-mechanically reclaimed, were used to obtain ‘‘green’’ polyurethane-polyglycerol composite foams. Samples were prepared by a single-step method for the ratio of NCO/OH...
-
Silica-Based Ionogels: Nanoconfined Ionic Liquid-Rich Fibers for Headspace Solid-Phase Microextraction Coupled with Gas Chromatography–Barrier Discharge Ionization Detection
PublicationIn this work, hybrid silica-based materials with immobilized ionic liquids (ILs) were prepared by sol–gel technology and evaluated as solid-phase microextraction (SPME) fiber coatings. High loadings of the IL 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ([C4MIM][TFSI]) were confined within the hybrid network. Coatings composition and morphology were evaluated using scanning electron microscopy and energy dispersive...
-
Laboratory fatigue assessment of large geocomposite-reinforced double-layered asphalt concrete beams
PublicationGeosynthetic reinforcement of asphalt layers has been used for several decades. Evaluation of the influence of these materials on pavement fatigue life is still ongoing, especially for new types of geocomposites. This paper presents the evaluation of fatigue performance of large asphalt concrete beams reinforced with a new type of composite in which square or hexagonal polypropylene stiff monolithic paving grid with integral junctions...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Dual-Setting Bone Cement Based On Magnesium Phosphate Modified with Glycol Methacrylate Designed for Biomedical Applications
PublicationMagnesium phosphate cement (MPC) is a suitable alternative for the currently used calcium phosphates, owing to beneficial properties like favorable resorption rate, fast hardening, and higher compressive strength. However, due to insufficient mechanical properties and high brittleness, further improvement is still expected. In this paper, we reported the preparation of a novel type of dual-setting cement based on MPC with poly(2-hydroxyethyl...
-
Multifunctional catalyst-assisted sustainable reformation of lignocellulosic biomass into environmentally friendly biofuel and value-added chemicals
PublicationRapid urbanization is increasing the world's energy demand, making it necessary to develop alternative energy sources. These growing energy needs can be met by the efficient energy conversion of biomass, which can be done by various means. The use of effective catalysts to transform different types of biomasses will be a paradigm change on the road to the worldwide goal of economic sustainability and environmental protection. The...
-
Closing the loop: Upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals
PublicationIn this study, we demonstrated the application of electrochemical oxidation as a safer and cleaner technology for minimizing the impact of pharmaceuticals in wastewaters, simultaneously mediated by upcycled secondary waste materials (SWMs)-derived electrodes, to further reduce their environmental impact. The modularity, scalability, ease of operation and reliability make electrochemical oxidation an ideal process for the destruction...