Filters
total: 1612
filtered: 1073
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: WEAKLY SUPERVISED LEARNING
-
Sensors and System for Vehicle Navigation
PublicationIn recent years, vehicle navigation, in particular autonomous navigation, has been at the center of several major developments, both in civilian and defense applications. New technologies, such as multisensory data fusion, big data processing, or deep learning, are changing the quality of areas of applications, improving the sensors and systems used. Recently, the influence of artificial intelligence on sensor data processing and...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Tacit Knowledge Sharing and Project Performance. Does the Knowledge Workers' Personal Branding Matter?
PublicationTacit knowledge sharing is the real challenge for knowledge management today. Network economy has completely changed the role of knowledge workers who now become independent tacit knowledge producers. Bearing this fact in mind, the author studied how tacit knowledge sharing affects the process of building a personal brand and project performance. For this purpose, the authors conducted a study among Polish professionals with different...
-
Path-based methods on categorical structures for conceptual representation of wikipedia articles
PublicationMachine learning algorithms applied to text categorization mostly employ the Bag of Words (BoW) representation to describe the content of the documents. This method has been successfully used in many applications, but it is known to have several limitations. One way of improving text representation is usage of Wikipedia as the lexical knowledge base – an approach that has already shown promising results in many research studies....
-
ANALIZA STANU TECHNICZNEGO RUROCIĄGÓW: WODY PRZeMYSŁOWEJ I SOLANKI
PublicationPracę wykonano na zlecenie Przedsiębiorstwa Badawczo-Wdrożeniowego "HYDRO-POMP" Sp. z o.o. ul. Wróblewskiego 19, 93-578 Łódź. Wykonawcą zlecenia jest Politechnika Gdańska, Wydział Chemiczny, Katedra Elektrochemii, Korozji i Inżynierii Materiałowej, 80-233 Gdańsk, ul. G. Narutowicza 11/12. Celem pracy była analiza stanu technicznego i badania dwóch rurociągów: solanki oraz wody przemysłowej. Badania wykonywano w warunkach terenowych...
-
MOST Wiedzy jako narzędzie promocji otwartych zasobów nauki
PublicationRośnie znaczenie wiedzy zgromadzonej w różnego rodzaju systemach, w tym w kursach on-line. Połączenie systemów je przetwarzających z Internetem w znaczącym stopniu usprawniło rozprzestrzenianie informacji i zwiększyło jej dostępność. Coraz szersze uznanie zyskują ruchy Otwartego Dostępu (ang. Open Access). Politechnika Gdańska w ramach projektu Multidyscyplinarny Otwarty System Transferu Wiedzy – MOST Wiedzy buduje platformę o...
-
Online sound restoration system for digital library applications
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Energy-Aware Scheduling for High-Performance Computing Systems: A Survey
PublicationHigh-performance computing (HPC), according to its name, is traditionally oriented toward performance, especially the execution time and scalability of the computations. However, due to the high cost and environmental issues, energy consumption has already become a very important factor that needs to be considered. The paper presents a survey of energy-aware scheduling methods used in a modern HPC environment, starting with the...
-
Autoencoder application for anomaly detection in power consumption of lighting systems
PublicationDetecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning...
-
Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects
PublicationModern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimizationand model prediction. The effective utilization of ML techniques for the development and scaling up of renewable energy systemsneeds a high degree of accountability. However, most of the ML approaches currently in use are termed black box since their work isdifficult to comprehend. Explainable artificial intelligence (XAI)...
-
To Survive in a CBRN Hostile Environment: Application of CAVE Automatic Virtual Environments in First Responder Training
PublicationThis paper is of a conceptual nature and focuses on the use of a specific virtual reality environment in civil-military training. We analyzed the didactic potential of so-called CAVE automatic virtual environments for First Responder training, a type of training that fills the gap between First Aid training and the training received by emergency medical technicians. Since real training involves live drills based on unexpected situations,...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?
PublicationThis study contributes to the literature on financial security by highlighting the relevance of the perceptions and resulting professional judgment of stakeholders. Assessing a company’s financial security using only economic indicators—as suggested in the existing literature—would be inaccurate when undertaking a comprehensive study of financial security. Specifically, indices and indicators based on financial or managerial reporting...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublicationCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience
PublicationSignificant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...
-
Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes
PublicationProcessing of lignocellulosic biomass includes four major unit operations: pre-treatment, hydrolysis, fermentation and product purifcation prior to biofuel generation via anaerobic digestion. The microorganisms involved in the fermentation metabolize only simple molecules, i.e., monosugars which can be obtained by carrying out the degradation of complex polymers, the main component of lignocellulosic biomass. The object of this...
-
Neural network agents trained by declarative programming tutors
PublicationThis paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublicationMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublicationHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublicationWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Experimental determination of general characteristic of internal combustion engine using mobile test bench connected via Power Take-Off unit
PublicationThe general characteristics of the engine include information about the regions of the engine's operating area that are most efficient, where specific fuel consumption reaches the smallest values. Economic operation based on those characteristics can contribute to a significant reduction of fuel consumption and consequently less pollutant emissions and lower costs. The paper presents an experimental method of determination of general...
-
Long Distance Vital Signs Monitoring with Person Identification for Smart Home Solutions
PublicationAbstract— Imaging photoplethysmography has already been proved to be successful in short distance (below 1m). However, most of the real-life use cases of measuring vital signs require the system to work at longer distances, to be both more reliable and convenient for the user. The possible scenarios that system designers must have in mind include monitoring of the vital signs of residents in nursing homes, disabled people, who...
-
Halucynacje chatbotów a prawda: główne nurty debaty i ich interpretacje
PublicationGeneratywne systemy sztucznej inteligencji (SI) są w stanie tworzyć treści medialne poprzez zastosowanie uczenia maszynowego do dużych ilości danych szkoleniowych. Te nowe dane mogą obejmować tekst (np. Bard firmy Google, LLaMa firmy Meta lub ChatGPT firmy OpenAI) oraz elementy wizualne (np. Stable Diffusion lub DALL-E OpenAI) i dźwięk (np. VALL-E firmy Micro- soft). Stopień zaawansowania tych treści może czynić je nieodróżnialnymi...
-
Otwarte zasoby edukacyjne - przegląd inicjatyw w Polsce i na świecie
PublicationOtwarte zasoby edukacyjne (OZE) to materiały szkoleniowe oraz narzędzia wspierające zarówno uczenie, jak i nauczanie. Zjawisko to nierozerwalnie łączy się z szerszym pojęciem otwartej edukacji (OE), które postuluje zniesienie barier w nauczaniu tak, aby uczący się mogli zdobywać wiedzę zgodnie ze swoimi potrzebami edukacyjno-szkoleniowymi. Celem artykułu jest zapoznanie czytelników z zagadnieniem otwartych zasobów edukacyjnych,...
-
Application of artificial intelligence into/for control of flexible manufacturing cell
PublicationThe application of artificial intelligence in technological processes control is usually limited. One problem is how to respond to changes in the environment of manufacturing system. A way to overcome the above shortcoming is to use fuzzy logic for representation of the inexact information. In this paper fundamentals of artificial intelligence and fuzzy logic are introduced from a theoretical point of view. Still more the fuzzy...
-
Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
PublicationThis paper examines the usefulness of logit regression in forecasting the consumer bankruptcy of households using an imbalanced dataset. The research on consumer bankruptcy prediction is of paramount importance as it aims to build statistical models that can identify consumers in a difficult financial situation that may lead to consumer bankruptcy. In the face of the current global pandemic crisis, the future of household finances...
-
Asking Data in a Controlled Way with Ask Data Anything NQL
PublicationWhile to collect data, it is necessary to store it, to understand its structure it is necessary to do data-mining. Business Intelligence (BI) enables us to make intelligent, data-driven decisions by the mean of a set of tools that allows the creation of a potentially unlimited number of machine-generated, data-driven reports, which are calculated by a machine as a response to queries specified by humans. Natural Query Languages...
-
MSRL and the Real-Life Processes of Capturing and Implementing the "Urban Innovation"
PublicationResult of the MSRL workshop, five research projects, reflect on a broader process of exchange of the ideas between the cities, that is occurring in the real life and became one of the driving factors of the urban development nowadays. The objective of the MSRL research - concepts, which help to advance the development of the cities, support the improvement of the quality of urban environment or meet the future challenges, can be...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublicationImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology
PublicationLignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization...
-
Desirability-based optimization of dual-fuel diesel engine using acetylene as an alternative fuel
Publicationhe study examined the dual-fuel engine performance employing acetylene gas as primary fuel and diesel as pilot fuel. The engine's operational parameters were adjusted using the Box-Behnken design, and the results were recorded. The best operating settings were yielded as 81.25 % engine load, 4.48 lpm acetylene gas flow rate and the compression ratio were 18. At this optimized setting the BTE was 27.1 % and the engine emitted 360...
-
Effective Collaboration of Entrepreneurial Teams—Implications for Entrepreneurial Education
PublicationIn the situation of a permanent change and increased competition, business ventures are more and more often undertaken not by individuals but by entrepreneurial teams. The main aim of this paper is to examine the team principles implemented by eective entrepreneurial teams and how they dier in nascent and established teams. We also focused on the relationship between the implementation of these rules by entrepreneurial team members...
-
Evaluating Accuracy of Respiratory Rate Estimation from Super Resolved Thermal Imagery
PublicationNon-contact estimation of Respiratory Rate (RR) has revolutionized the process of establishing the measurement by surpassing some issues related to attaching sensors to a body, e.g. epidermal stripping, skin disruption and pain. In this study, we perform further experiments with image processing-based RR estimation by using various image enhancement algorithms. Specifically, we employ Super Resolution (SR) Deep Learning (DL) network...
-
Smartphones as tools for equitable food quality assessment
PublicationBackground: The ubiquity of smartphones equipped with an array of sophisticated sensors, ample processing power, network connectivity and a convenient interface makes them a promising tool for non-invasive, portable food quality assessment. Combined with the recent developments in the areas of IoT, deep learning algorithms and cloud computing, they present an opportunity for advancing wide-spread, equitable and sustainable food...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublicationThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Analysis-by-synthesis paradigm evolved into a new concept
PublicationThis work aims at showing how the well-known analysis-by-synthesis paradigm has recently been evolved into a new concept. However, in contrast to the original idea stating that the created sound should not fail to pass the foolproof synthesis test, the recent development is a consequence of the need to create new data. Deep learning models are greedy algorithms requiring a vast amount of data that, in addition, should be correctly...
-
The Knowledge Transfer From Headquarter to Local Subsidiaries Through Expatriates - Local Employees’ Perspective
PublicationBackground. Knowledge transfer between the HQ and subsidiary has recently been targets of increasing research interest. However, the role of expatriate managers and local staff perspective on this process has not been examined enough. Research aims. This paper has two main objectives: first to develop a conceptual framework (model) of knowledge transfer between the headquarters and local subsidiary, and second to empirically evaluate...
-
Od zajęć tradycyjnych do MOOCów – role nauczyciela języków obcych
PublicationE-learning może stać się skutecznym środowiskiem uczenia się i nauczania przede wszystkim dzięki wytężonej pracy kompetentnego nauczyciela. Różne role, jakie musi on wypełniać, związane są z naturą procesu edukacyjnego prowadzonego online, na który ma wpływ przyjęta koncepcja metodyczna, instruktywistyczna lub konstruktywistyczna, liczba uczestników, struktura kursu, typy zasobów i aktywności oraz tematyka całego programu lub modułu....
-
Towards New Mappings between Emotion Representation Models
PublicationThere are several models for representing emotions in affect-aware applications, and available emotion recognition solutions provide results using diverse emotion models. As multimodal fusion is beneficial in terms of both accuracy and reliability of emotion recognition, one of the challenges is mapping between the models of affect representation. This paper addresses this issue by: proposing a procedure to elaborate new mappings,...
-
Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging
PublicationIn the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...
-
Adaptacyjny system sterowania ruchem drogowym
PublicationAdaptacyjny system sterowania ruchem drogowym to rodzaj systemu sterowania, który dynamicznie, w czasie rzeczywistym, dostosowuje swoje parametry w oparciu o bieżące warunki ruchu drogowego. Celem niniejszej rozprawy jest sprawdzenie wpływu wybranych cech systemu, zbudowanego w oparciu o zaprojektowane i zbudowane z udziałem autora inteligentne znaki drogowe, na wybrane parametry mające wpływ na bezpieczeństwo i płynność ruchu....
-
Wyzwania bezpieczeństwa nowoczesnych platform nauczania zdalnego
PublicationW artykule zaprezentowano aspekty bezpieczeństwa nowoczesnych platform nauczania zdalnego. Przedstawiono ich charakterystykę i wyzwania technologiczne. Zdefiniowano bezpieczeństwo i istniejące w tym obszarze zagrożenia. Przybliżono metody oceny poziomu bezpieczeństwa. Na bazie wdrożonej na Politechnice Gdańskiej platformy eNauczanie PG omówiono sposoby zapewniania zakładanego poziomu bezpieczeństwa takich systemów.
-
Cobalt(II) tri-tert-butoxysialanethiolates.Synthesis, properties, crystal and molecular structures of [Co{SSi(OtBu)3}2(L)] and[Co{SSi(OtBu)3}2(L)2] type complexes with monodentate nitrogen ligands.
PublicationThe title heteroleptic neutral cobalt(II) tri-tert-butoxysilanethiolate complexes with monodentate nitrogen bases (L) as additional ligands have been prepared by the reactions of [Co{μ-SSi(OtBu)3}{SSi(OtBu)3}(NH3)]2 (1) with respective bases. For pyridine both types have been prepared...
-
Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
PublicationMost of industrial processes are nonlinear, not stationary, and dynamical with at least few different time scales in their internal dynamics and hardly measured states. A biological wastewater treatment plant falls into this category. The paper considers modelling such processes for monitorning and control purposes by using State - Space Wavelet Neural Networks (SSWN). The modelling method is illustrated based on bioreactors of...
-
Multimodal human-computer interfaces based on advanced video and audio analysis
PublicationMultimodal interfaces development history is reviewed briefly in the introduction. Some applications of multimodal interfaces to education software for disabled people are presented. One of them, the LipMouse is a novel, vision-based human-computer interface that tracks user’s lip movements and detect lips gestures. A new approach to diagnosing Parkinson’s disease is also shown. The progression of the disease can be measured employing...
-
Online sound restoration system for digital library applications.
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Quantifying inconsistencies in the Hamburg Sign Language Notation System
PublicationThe advent of machine learning (ML) has significantly advanced the recognition and translation of sign languages, bridging communication gaps for hearing-impaired communities. At the heart of these technologies is data labeling, crucial for training ML algorithms on a huge amount of consistently labeled data to achieve models that generalize well. The adoption of language-agnostic annotations is essential to connect different sign...