displaying 1000 best results Help
Search results for: MECHANICAL PROPERTIES WELDED JOINTS
-
Tailoring Diffusional Fields in Zwitterion/Dopamine Copolymer Electropolymerized at Carbon Nanowalls for Sensitive Recognition of Neurotransmitters
PublicationThe importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls...
-
Flame-Retardant Polymer Materials Developed by Reactive Extrusion: Present Status and Future Perspectives
PublicationThe development of flame retardant polymer materials has two roots, one in materials design, and the other in materials processing. Over recent decades, different types and classes of flame retardant polymer materials have been commercialized to meet safety requirements in the construction, automotive, and coatings industries. In the vast majority of cases, the design and fabrication of new materials presenting low fire hazards...
-
Preparation and characterization of natural rubber composites highly filled with brewers' spent grain/ground tire rubber hybrid reinforcement
PublicationBrewers' spent grain (BSG) and ground tire rubber (GTR) were applied as low-cost hybrid reinforcement natural rubber (NR). The impact of BSG/GTR ratio (in range: 100/0, 75/25, 50/50, 25/75 and 0/100 phr) on processing and performance properties of highly filled natural rubber composites was evaluated by oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy,...
-
Medical-Grade PCL Based Polyurethane System for FDM 3D Printing—Characterization and Fabrication
PublicationThe widespread use of three-dimensional (3D) printing technologies in medicine has contributed to the increased demand for 3D printing materials. In addition, new printing materials that are appearing in the industry do not provide a detailed material characterization. In this paper, we present the synthesis and characterization of polycaprolactone (PCL) based medical-grade thermoplastic polyurethanes, which are suitable for forming...
-
Effect of aeration of antibiotic-loaded bone cement on its properties and bactericidal effectiveness
PublicationBACKGROUND: Antibiotic-loaded bone cements are now widely used in medicine. They are able to locally deliver antibiotic particles and they allow treat or protect against infection. It is assumed that the bactericidal effectiveness of bioactive bone cements depend on the parameters of its production. Hence, the aim of this study was to check the effect of aeration of bone cement before mixing the components on its properties as...
-
Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants
PublicationAn increasing interest in the fabrication of implants made of titanium and its alloys results from their capacity to be integrated into the bone system. This integration is facilitated by different modifications of the implant surface. Here, we assessed the bioactivity of amorphous titania nanoporous and nanotubular coatings (TNTs), produced by electrochemical oxidation of Ti6Al4V orthopedic implants’ surface. The chemical composition...
-
A comprehensive evaluation of flexible FDM/FFF 3D printing filament as a potential material in medical application
PublicationThe use of FDM/FFF in 3D printing for medical sciences is becoming common. This is due to the high availability and decent price of both 3D printers and filaments useful for FDM/FFF. Currently, researchers' attention is focused mainly on the study of medical filaments based on PLA, PCL or their modifications. This contributes to insufficient diversity of medical-grade filaments on the market. Moreover, due to the lack of specified...
-
Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics
PublicationThe lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin...
-
Multi-functional monodispersed SiO2-TiO2 core-shell nanostructure and TEOS in the consolidation of archaeological lime mortars surfaces
PublicationArchaeological traditional lime mortars are susceptible to many environmental conditions such as the impact of water (rain, humidity, groundwater, etc.), variation of temperatures' degrees, wind and/or pollution. Accordingly, this research aims to provide newly assessed multifunctional Nano-coating for the purpose of archaeological lime mortar protection. For this, the study combined physicochemical and mechanical characterizations...
-
Experimental Evaluation of ND: YAG Laser Parameters and Sample Preparation Methods for Texturing Thin AISI 316L Steel Samples
PublicationIn mechanical and material engineering, the effect of laser texturing depends on many factors besides device specification, primarily the properties of the materials being processed, and, secondly, the preparation of the sample. Laser texturing of thin (<5 mm) samples is mostly performed utilizing short-pulse lasers, but depending on the power of the laser beam, the process can also be performed by using continuous operation lasers....
-
Cost-Effective and Sufficiently Precise Integration Method Adapted to the FEM Calculations of Bone Tissue
PublicationThe technique of Young’s modulus variation in the finite element is not spread in biomechanics. Our future goal is to adapt this technique to bone tissue strength calculations. The aim of this paper is to present the necessary studies of the element’s integration method that takes into account changes in material properties. For research purposes, a virtual sample with the size and distribution of mechanical properties similar...
-
Nanocrystalline CVD Diamond Coatings on Fused Silica Optical Fibres: Optical Properties Study
Publicationpre-treatment by dip coating in two detonation nanodiamond (DND) seeding media has been studied. The DND suspension in ethyl alcohol and dispersion of DND in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) were chosen for the seeding purpose. The grain size distribution of nanodiamond particles in both seeding media was kept at the same level (approximately 1050 nm). After the seeding nanocrystalline diamond lms were deposited...
-
Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part I—Research Methodology and Results
PublicationPolyethylene terephthalate (PET) is widely used in bottle production due to its costeffectiveness and low environmental impact. The first part of this article describes the research and statistical analysis methodology of the influence of the virgin PET (vPET) and recycled PET (rPET) content in the vPET-rPET blend, as well as the preform heating/cooling conditions in the stretch blow molding (SBM) process on the microscopic bottle...
-
Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
PublicationThe present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefed in crude glycerol and 1,4-butanediol at diferent temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identifcation of the obtained polyols were...
-
Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials
PublicationBones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing...
-
Insights into modification of lignocellulosic fillers with isophorone diisocyanate: structure, thermal stability and volatile organic compounds emission assessment
PublicationThis study presents an analysis of the structure and properties of different types of lignocellulosic fillers modified by isophorone diisocyanate (IPDI) to provide insights into the possibility of their application to the manufacturing of wood polymer composites (WPCs). Moreover, it deals with the environmental aspects of modified fillers, by assessment of volatile organic compounds (VOCs) emitted during modification, as well as...
-
Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy
PublicationElectrochemical anodization is regarded as a facile and easily scalable fabrication method of titania nanotubes (TiO2NTs). However, due to the extended duration of calcination and further modifications, much faster alternatives are highly required. As a response to growing interest in laser modification of nanotube arrays, a comprehensive investigation of pulsed-laser irradiation and its effect onto TiO2NT properties has been carried out....
-
Properties of Old Concrete Built in the Former Leipziger Palace
PublicationThis research aims to determine the mechanical, chemical, and physical properties of old concrete used in the former Leipziger Palace in Wrocław, Poland. The cylindrical specimens were taken from the basement concrete walls using a concrete core borehole diamond drill machine. The determination of the durability and strength of old concrete was based on specified chosen properties of the old concrete obtained through the following...
-
Conductive Thermoplastic Polyurethane Nanocomposite Foams Derived from a Cellulose/MWCNTs Aerogel Framework: Simultaneous Enhancement of Piezoresistance, Strength, and Endurance
PublicationHigh conductivity and excellent mechanical properties of composite polymers favors their application as piezoresistive strain sensors. Nonetheless, it is difficult to develop composite polymers with desirable piezoresistance, mechanicaland durable properties. Herein, we developed conductive cellulose/MWCNTs aerogel using the freeze-drying technique. Besides, we explored the application of the highly-sensitive piezoresistive polymer...
-
Experimental Study on Dynamics of Wooden House Wall Panels with Different Thermal Isolation
PublicationWood frame buildings are very popular in regions that are exposed to different dynamic excitations including earthquakes. Therefore, their seismic resistance is really important in order to prevent structural damages and human losses. The aim of the present paper is to show the results of experimental tests focused on the dynamic response of wall panels of a wooden frame building with thermal isolation made of mineral wool and...
-
Influence of sludge treatment processes on heavy metal speciation
PublicationSludge composition is depending on sewage quality and also affected by processing methods such as thickening, stabilization and dewatering. During those processes some of sludge's undesirable properties might be reduced or enhanced.The objective of the study is the assessment of the influence of sludge processing on selected heavy metals partitioning between phases (aqueous and particle) and sludge. Sludge from the WWTP in Gdansk...
-
Recent Advances in Graphene Oxide-Based Membranes for Heavy Metal Ions Separation
PublicationGraphene oxide (GO)-based membranes have been widely investigated for separation of dyes, salt ions, heavy metal ions, and biomolecules due to their high mechanical strength, single-layered structure, large surface area, and high affinity. However, due to irregular pore structure, nanochannels, interlayer distance, easy functionalization, swelling effect, and chemical stability under aqueous environment limited their separation...
-
Formation and Growth of the Crack in Bonded Joints Under Mode I Fracture: Substrate Deflection at Crack Vicinity
PublicationAdhesive bonding is now commonly used in aircraft, cars, boats, etc. In these applications, thin panels are often bonded. In such thin structures, heterogeneous mechanical loading along the bondline edge (or potential crack front), is likely to arise due to 3D structural effects. The crack front and its vicinity is a special region, in that it is where structural properties of the adherend material meet those of the adhesive (discontinuity)....
-
Comparison of road and laboratory measurements of tyre/road noise
PublicationTyre/road noise is one of the major environmental problems related to road traffic. There are several measuring methods of tyre/road noise that may be carried out on the road (for example Coast-down and Close Proximity Method) or in the laboratory (Drum Method). Road measurements are preferred for evaluations of pavement properties while laboratory methods are mostly used to evaluate tyres. One of the biggest problems associated...
-
Selected biotrends in development of epoxy resins and their composites
PublicationEpoxy resins and their fibre or particulate composites are widely used in various industries, including building, naval, aircraft, automotive and aerospace. Modern polymer science and technology focus on the development of green polymers and composites. There are two major areas of interest in the case of epoxy resins: the development of bio-based resins and the production of composites with natural fibers. One of the most interesting...
-
Estimation of the Ultimate Strength of FRP Strips-to-Masonry Substrates Bond
PublicationFiber-Reinforced Polymers (FRP) were developed as a new method over the past decades due to their many beneficial mechanical properties, and they are commonly applied to strengthen masonry structures. In this paper, the Artificial Neural Network (ANN), K-fold Cross-Validation (KFCV) technique, Multivariate Adaptive Regression Spline (MARS) method, and M5 Model Tree (M5MT) method were utilized to predict the ultimate strength of...
-
A Simple Replica Method as the Way to Obtain a Morphologically and Mechanically Bone-like Iron-Based Biodegradable Material
PublicationPorous iron-based scaffolds were prepared by the simple replica method using polyurethane foam as a template and applying the sintering process in a tube furnace. Their surface morphology was characterized using scanning electron microscopy (SEM) and phase homogeneity was confirmed using X-ray diffraction (XRD). Corrosion behavior was determined using immersion and potentiodynamic polarization methods in phosphate buffered saline...
-
A Quantitative Investigation of Dislocation Density in an Al Matrix Composite Produced by a Combination of Micro-/Macro-Rolling
PublicationAn aluminum matrix composite with dispersed carbon nanotubes (CNTs) was produced via flake powder metallurgy using a micro-rolling process and vacuum hot pressing (VHP), followed by conventional rolling using a macro-rolling process. The microstructure and mechanical properties of the produced composites were studied. In addition, a new quantitative model was introduced to study the dislocation density based on the microstructural...
-
Global sensitivity analysis of membrane model of abdominal wall with surgical mesh
PublicationThe paper addresses the issue of ventral hernia repair. Finite Element simulations can be helpful in the optimization of hernia parameters. A membrane abdominal wall model is proposed in two variants: a healthy one and including hernia defect repaired by implant. The models include many uncertainties, e.g. due to variability of abdominal wall, intraabdominal pressure value etc. Measuring mechanical properties with high accuracy...
-
Modification of Ground Tire Rubber—Promising Approach for Development of Green Composites
PublicationGround tire rubber (GTR) was mechano-chemically modified using a road bitumen 100/150 and two types of organic peroxides: di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB) and dicumyl peroxide (DCP). The impact of used additives on reactive sintering efficiency and physico-mechanical properties of modified GTR was investigated using oscillating disc rheometer measurements, followed by tensile tests and swelling behavior studies....
-
Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
PublicationAerogel-based polymer composite foams are promising for large strain piezoresistive sensors, but their aerogel skeleton is partially destroyed during the foaming process, limiting their sensitivity. Herein, the thermoplastic polyurethane was synthesized on the aerogel skeleton to obtain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite materials foamed with the aid of supercritical carbon...
-
Eco-friendly Route for Thermoplastic Polyurethane Elastomers with Bio-based Hard Segments Composed of Bio-glycol and Mixtures of Aromatic–Aliphatic and Aliphatic–Aliphatic Diisocyanate
PublicationApplication of bio-based diisocyanates with low volatility instead petrochemical diisocyanates has positive impact on environment by reduction of hazardous effects on living organisms and lead to bio-based polyurethanes (bio-PUs) with good usage properties. This work was focused on the synthesis and chosen properties examination of partially bio-based thermoplastic polyurethane elastomers (bio-PUs) obtained using diisocyanate mixtures,...
-
Modeling the impact of discretizing rotor angular position on computation of field-oriented current components in high speed electric drives
PublicationModern drives consist of alternating current electric motors, and the field-oriented control (FOC) of such motors enables fast, precise, and robust regulation of a drive's mechanical variables such as torque, speed, and position. The control algorithm, implemented in a microprocessor, requires feedback from motor currents, and the quality of this feedback is essential to a drive's control properties. Motor phase currents are sampled...
-
The chemistry, properties and performance of flame-retardant rubber composites: Collecting, analyzing, categorizing, machine learning modeling, and visualizing
PublicationRubbers combine the flexibility with mechanical strength, supporting myriad applications, but suffer from inherent flammability. Formulation and production of flame-retardant rubber composites (FRRCs) have intensively been practiced over years, but not comprehensively reviewed. This necessity has outlined collecting, analyzing, screening, classifying, and interpreting the literature with the aim of classifying the FRRCs. We quantified...
-
Torsional elasticity and energetics of F1-ATPase
PublicationFoF1-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded Fo generates the rotary torque that drives the rotation of the asymmetric shaft of F1. Mechanical energy of the rotating shaft is used by the F1 catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant...
-
Investigation into the Effect of Spinel Pigments on the Photostability and Combustion Properties of Ethylene-Norbornene Copolymer
PublicationMulticolor ethylene-norbornene (EN) composites filled with three different spinel pigments (Cobalt Green-PG50, Zinc Iron Yellow-PY 119, Praseodym Yellow-PY159) were prepared by melt mixing and characterized in terms of their stability under destructive environmental conditions. The EN films were subjected to accelerated aging by ultraviolet (UV) photooxidation for 300 h, 600 h, or 900 h. The mechanical performance of the EN composites...
-
Experimental and Numerical Investigation of Tensile and Flexural Behavior of Nanoclay Wood-Plastic Composite
PublicationIn this study, the effect of wood powder and nanoclay particle content on composites’ mechanical behavior made with polyethylene matrix has been investigated. The wood flour as a reinforcer made of wood powder was at levels of 30, 40, and 50 wt.%, and additional reinforcement with nanoclay at 0, 1, 3, and 5 wt.%. Furthermore, to make a composite matrix, high-density polyethylene was used at levels of 70, 60, and 50% by weight....
-
Laser Welding of UNS S33207 Hyper-Duplex Stainless Steel to 6061 Aluminum Alloy Using High Entropy Alloy as a Filler Material
PublicationThe high entropy alloy (HEA) filler used during the fabrication method determines the reliability of HEAs for steel-aluminum dissimilar alloy configuration. HEAs have a direct impact on the formation of intermetallic compounds (IMC) formed by the interaction of iron (Fe) and aluminum (Al), and influence the size of the joint’s interaction zone. A novel welding process for Fe-Al alloy joints was developed to prevent the development...
-
Balanand Santhosh Ph.D.
PeopleDr. Balanand Santhosh, obtained his Ph.D. (cum laude) in Materials, Mechatronics and Systems engineering from the Department of Industrial Engineering, University of Trento, Italy. He is currently working as Research Assistant Professor at Gdansk Univerity of Technology, Poland. Formerly he was working as a post-doctoral researcher at University of Trento, Italy. His research expertise is mainly in the area of ceramic processing...
-
Wastes from Agricultural Silage Film Recycling Line as a Potential Polymer Materials
PublicationThe recycling of plastics is currently one of the most significant industrial challenges. Due to the enormous amounts of plastic wastes generated by various industry branches, it is essential to look for potential methods for their utilization. In the presented work, we investigated the recycling potential of wastes originated from the agricultural films recycling line. Their structure and properties were analyzed, and they were...
-
Influence of windsurfing fin stiffness distribution on the lift-drag characteristics
PublicationThis article addresses the problem of determining the hydromechanical loads generated by flexible hydrofoils. The research was done on the example of the composite windsurfing fin for the RS:X monotype class. Despite the assumption of fins identity, everyday practice showed that variations of mechanical properties occur and strongly affect their performance. Therefore, we decided to study the differences between the windsurfing...
-
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
PublicationThe application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire...
-
Local dynamics of fluids and dielectrics as the foundation of signal-carrying wave properties
PublicationThis paper develops an original approach to fundamental problems of classical linear acoustics and electromagnetics, proving a crucial role of doubly-dynamic local properties of a propagation medium in supporting wave-like fields able to carry information signals. The proof is composed of two steps concerning, subsequently, fluid acoustics and dielectric electromagnetics. The first step consists in complementing a common, practically...
-
The comparison of SrTi0.98Nb0.02O3–δ-CeO2 and SrTi0.98Nb0.02O3–δ-YSZ composites for use in SOFC anodes
PublicationComposites of Nb-doped strontium titanate mixed with yttria-stabilized zirconia or cerium oxide in 50:50, 70:30 and 85:15 weight ratios were evaluated as possible anode/electrolyte interface materials for solid oxide fuel cells in terms of chemical compatibility, electrical conductivity and mechanical properties. It has been shown that composite samples prepared by typical powder-mixing methods remain single-phase up to 1400°C....
-
Experimental comparison of hydrodynamic thrust bearings with different pad surface materials
PublicationBabbitt is the material most frequently used as the pad surface material for hydrodynamic bearings operating at usual operating conditions. It shows many advantages important for safe bearing operation, as for example: low friction coefficient, corrosion resistance, fair mechanical properties and outstanding conformability. On the other hand, it is not free from disadvantages, such as limited fatigue strength or limited resistance...
-
The influence of feed rate and shear forces on the devulcanization process of ground tire rubber (GTR) conducted in a co-rotating twin screw extruder
PublicationThe search for new ways to recycling of rubber waste has been the aim of many studies conducted by research centers and companiesworldwide. The results of our investigations on the process of continuous thermomechanical devulcanization of ground tire rubber using a twin screw extruder are presented.We used a co-rotating twin screw extruder with a special configuration of plasticizing unit, enabling generation of considerable shear...
-
A simple route of providing a soft interface for PEDOT: PSS film metallic electrodes without loss of their electrical interface parameters
PublicationThe work presents the development of a soft interface at PEDOT:PSS film without changing its electrical interface parameters. In the first step, PEDOT:PSS is electrodeposited on the commercial platinum electrode under the state-of-the-art conditions desirable for different electrochemical electrodes. Secondly, a pure hydrogel layer is deposited on the top of the electrodeposited PEDOT:PSS film under conditions that provide desirable...
-
Tailoring of Optical Properties of Methacrylate Resins Enriched by HPHT Microdiamond Particles
PublicationDiamond particles have great potential to enhance the mechanical, optical, and thermal properties of diamond–polymer composites. However, the improved properties of diamond–polymer composites depend on the size, dispersibility, and concentration of diamond particles. In the present study, diamond–polymer composites were prepared by adding the microdiamond particles (MDPs) with different concentrations (0.2–1 wt.%) into polymers...
-
Characteristics of silver-dopped carbon nanotube coating destined for medical applications
PublicationCarbon nanotubes are materials demonstrating outstanding mechanical, chemical, and physical properties and are considered coatings of titanium implants. The present research is aimed to characterize the microstructure and properties of the multi-wall carbon nanotubes (MWCNTs) layer decorated with silver nanoparticles (Ag NPs) on the Ti13Nb13Zr alloy destined for long-term implants. The electrophoretic deposition of coatings...
-
Impact and stretching standardized tests as useful tools for assessment of viscoelastic behavior for highly rubberized asphalt binder
PublicationAsphalt binder is generally identified as a brittle material at low service temperature or under high-speed load, and the brittleness becomes serious after weathering aging. Improving the toughness of asphalt binder through adding high-content of crumb tire rubber is an efficient method to solve this problem. Devulcanized rubber modified asphalt binder (DRMA) with different contents (15–40%) of devulcanized rubber (DR) were prepared...